首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The present study aimed to investigate the seasonal cellular stress response in vital organs, like the heart, the liver, the whole blood and the skeletal (red and white) muscles of the Mediterranean fish Sparus aurata during a 1-year acclimatization period in the field, in two examined depths (0–2 m and 10–12 m). Processes studied included heat shock protein expression and protein kinase activation. Molecular responses were addressed through the expression of Hsp70 and Hsp90, the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). The induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs in the examined five tissues of the gilthead sea bream indicated a cellular stress response under the prism of a seasonal pattern which was characterized by distinct tissue specificity. Specifically, Hsp induction and MAPK activation occurred before peak summer water temperatures, with no further increases in their levels despite increases in water temperatures. Moreover, although water temperature did not vary significantly with depth of immersion, significant effects of depth on cellular stress response were observed, probably caused by different light regime. The expression and the activation of these certain proteins can be used as tools to define the extreme thermal limits of the gilthead sea bream.  相似文献   

2.
3.
The present study aimed to determine the thermal response of the Mediterranean mussel Mytilus galloprovincialis by integrating information from various levels of biological organization including behavior, metabolic adjustments, heat shock protein expression, and protein kinase activity. Behavioral responses were determined by examining the effect of warming on valve closure and opening. Metabolic impacts were assessed by examining the activity of the key glycolytic enzyme pyruvate kinase (PK). Molecular responses were addressed through the expression of Hsp70 and Hsp90 and the phosphorylation of stress-activated protein kinases, p38 mitogen-activated protein kinase (p38 MAPK) and cJun-N-terminal kinases (JNKs). Mussels increased the duration of valve closure by about sixfold when acclimated to 24 degrees C rather than to 17 degrees C. As indicated by the activity of PK, such behavior caused metabolic depression and probably a shift from aerobic to anaerobic metabolism. Acclimation to temperatures higher than 24 degrees C caused an increase in mortality and induced the expression of Hsp72. Increased phosphorylation of p38 MAPK and JNKs indicated activation of MAPK signaling cascades. The potential involvement of MAPKs in the induction of Hsp genes in the tissues of M. galloprovincialis is discussed. In conclusion, it seems that M. galloprovincialis lives close to its acclimation limits and incipient lethal temperature and that a small degree of warming will elicit stress responses at whole organism and molecular levels.  相似文献   

4.
Mitogen-activated protein kinases (MAP kinases) are intracellular signaling kinases activated by phosphorylation in response to a variety of extracellular stimuli. Mammalian MAP kinase pathways are composed of three major pathways: MEK1 (mitogen-activated protein kinase kinase 1)/ERK 1/2 (extracellular signal-regulated kinases 1/2)/p90 RSK (p90 ribosomal S6 kinase), JNK (c-Jun amino (N)-terminal kinase)/c-Jun, and p38 MAPK pathways. These pathways coordinately mediate physiological processes such as cell survival, protein synthesis, cell proliferation, growth, migration, and apoptosis. The involvement of MAP kinase in noise-induced hearing loss (NIHL) has been implicated in the cochlea; however, it is unknown how expression levels of MAP kinase change after the onset of NIHL and whether they are regulated by transient phosphorylation or protein synthesis. CBA/J mice were exposed to 120-dB octave band noise for 2 h. Auditory brainstem response confirmed a component of temporary threshold shift within 0–24 h and significant permanent threshold shift at 14 days after noise exposure. Levels and localizations of phospho- and total- MEK1/ERK1/2/p90 RSK, JNK/c-Jun, and p38 MAPK were comprehensively analyzed by the Bio-Plex® Suspension Array System and immunohistochemistry at 0, 3, 6, 12, 24 and 48 h after noise exposure. The phospho-MEK1/ERK1/2/p90 RSK signaling pathway was activated in the spiral ligament and the sensory and supporting cells of the organ of Corti, with peaks at 3–6 h and independently of regulations of total-MEK1/ERK1/2/p90 RSK. The expression of phospho-JNK and p38 MAPK showed late upregulation in spiral neurons at 48 h, in addition to early upregulations with peaks at 3 h after noise trauma. Phospho-p38 MAPK activation was dependent on upregulation of total-p38 MAPK. At present, comprehensive data on MAP kinase expression provide significant insight into understanding the molecular mechanism of NIHL, and for developing therapeutic models for acute sensorineural hearing loss.  相似文献   

5.
Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling   总被引:3,自引:0,他引:3  
Mixed-lineage kinase 3 (MLK3) is a mitogen-activated protein kinase (MAPK) kinase kinase that activates MAPK pathways, including the c-Jun NH(2)-terminal kinase (JNK) and p38 pathways. MLK3 and its family members have been implicated in JNK-mediated apoptosis. A survey of human cell lines revealed high levels of MLK3 in breast cancer cells. To learn more about MLK3 regulation and its signaling pathways in breast cancer cells, we engineered the estrogen-responsive human breast cancer cell line, MCF-7, to stably, inducibly express FLAG epitope-tagged MLK3. FLAG.MLK3 complexes were isolated by affinity purification, and associated proteins were identified by in-gel trypsin digestion followed by liquid chromatography/tandem mass spectrometry. Among the proteins identified were heat shock protein 90alpha,beta (Hsp90) and its kinase-specific co-chaperone p50(cdc37). We show that endogenous MLK3 complexes with Hsp90 and p50(cdc37). Further experiments demonstrate that MLK3 associates with Hsp90/p50(cdc37) through its catalytic domain in an activity-independent manner. Upon treatment of MCF-7 cells with geldanamycin, an ansamycin antibiotic that inhibits Hsp90 function, MLK3 levels decrease dramatically. Furthermore, tumor necrosis factor alpha-induced activation of MLK3 and JNK in MCF-7 cells is blocked by geldanamycin treatment. Our finding that geldanamycin treatment does not affect the cellular levels of the downstream signaling components, MAPK kinase 4, MAPK kinase 7, and JNK, suggests that Hsp90/p50(cdc37) regulates JNK signaling at the MAPK kinase kinase level. Previously identified Hsp90/p50(cdc37) clients include oncoprotein kinases and protein kinases that promote cellular proliferation and survival. Our findings reveal that Hsp90/p50(cdc37) also regulates protein kinases involved in apoptotic signaling.  相似文献   

6.
Kumar Y  Tatu U 《Proteomics》2003,3(4):513-526
Multiple stress proteins are recruited in response to stress in living cells. There are limited reports in the literature analyzing multiple stress protein shifts and their functional consequences on stress response. Using two-dimensional electrophoresis we have analyzed shifts in stress protein profiles in response to energy deprivation as a model of ischemic injury to kidneys. A group of chaperones and stress-induced mitogen activated protein (MAP) kinases were analyzed. In addition to examining stress protein induction and phosphorylation we have also examined the mechanism of cytoprotection by heat shock protein 70 (Hsp70). Our results show that, of the different stress proteins examined, only binding protein (BiP) and Hsp70 were significantly induced upon energy deprivation. Other stress proteins, including Hsp27, calnexin, Hsp90 and ERp57 showed alterations in their phosphorylation profiles. Three different MAP kinases, namely p38, extracellular signal regulated kisase and c-jun N-terminal kinase (JNK) were activated in response to energy deprivation. While JNK activation was linked to apoptosis, activated-p38 was involved in phosphorylation of Hsp27. Study of inhibitors of Hsp70 induction or pre-induction of Hsp70 indicated that induced Hsp70 was involved in the suppression of JNK activation thereby inhibiting apoptotic cell death. Our results provide important insights into the flux in stress protein profiles in response to simulated ischemia and highlight the antiapoptotic, cytoprotective mechanism of Hsp70 action.  相似文献   

7.
The heat shock response maintains cellular homeostasis following sublethal injury. Heat shock proteins (Hsps) are induced by thermal, oxyradical, and inflammatory stress, and they chaperone denatured intracellular proteins. Hsps also chaperone signal transduction proteins, modulating signaling cascades during repeated stress. Gastroesophageal reflux disease (GERD) affects 7% of the US population, and it is linked to prolonged esophageal acid exposure. GERD is characterized by enhanced and selective leukocyte recruitment from esophageal microvasculature, implying activation of microvascular endothelium. We investigated whether phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK regulate Hsp induction in primary cultures of human esophageal microvascular endothelial cells (HEMEC) in response to acid exposure (pH 4.5). Inhibitors of signaling pathways were used to define the contribution of PI3K/Akt and MAPKs in the heat shock response and following acid exposure. Acid significantly enhanced phosphorylation of Akt and MAPKs in HEMEC as well as inducing Hsp27 and Hsp70. The PI3K inhibitor LY-294002, and Akt small interfering RNA inhibited Akt activation and Hsp70 expression in HEMEC. The p38 MAPK inhibitor (SB-203580) and p38 MAPK siRNA blocked Hsp27 and Hsp70 mRNA induction, suggesting a role for MAPKs in the HEMEC heat shock response. Thus acidic pH exposure protects HEMEC through induction of Hsps and activation of MAPK and PI3 kinase pathway. Acidic exposure increased HEMEC expression of VCAM-1 protein, but not ICAM-1, which may contribute to selective leukocyte (i.e., eosinophil) recruitment in esophagitis. Activation of esophageal endothelial cells exposed to acidic refluxate may contribute to GERD in the setting of a disturbed mucosal squamous epithelial barrier (i.e., erosive esophagitis, peptic ulceration). esophagus; esophagitis; gastroesophageal reflux disease; microvasculature; phosphatidylinositol 3-kinase/Akt; VCAM-1  相似文献   

8.
9.
10.
Hsp70 aids in protein folding and directs misfolded proteins to the cellular degradation machinery. We describe discrete roles of Hsp70,SSA1 as an important quality-control machinery that switches functions to ameliorate the cellular environment. SSA1 facilitates folding/maturation of newly synthesized protein kinases by aiding their phosphorylation process and also stimulates ubiquitylation and degradation of kinases in regular protein turnover or during stress when kinases are denatured or improperly folded. Significantly, while kinases accumulate as insoluble inclusions upon SSA1 inhibition, they form soluble inclusions upon Hsp90 inhibition or stress foci during heat stress. This suggests formation of inclusion-specific quality-control compartments under various stress conditions. Up-regulation of SSA1 results in complete removal of these inclusions by the proteasome. Elevation of the cellular SSA1 level accelerates kinase turnover and protects cells from proteotoxic stress. Upon overexpression, SSA1 targets heat-denatured kinases toward degradation, which could enable them to recover their functional state under physiological conditions. Thus active participation of SSA1 in the degradation of misfolded proteins establishes an essential role of Hsp70 in deciding client fate during stress.  相似文献   

11.
12.
13.
14.
Growing evidence suggests that activation of mitogen-activated protein kinase (MAPK) signal transduction mediates changes in muscle gene expression in response to exercise. Nevertheless, little is known about upstream or downstream regulation of MAPK in response to muscle contraction. Here we show that ex vivo muscle contraction stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2), and p38(MAPK) phosphorylation. Phosphorylation of ERK1/2 or p38(MAPK) was unaffected by protein kinase C inhibition (GF109203X), suggesting that protein kinase C is not involved in mediating contraction-induced MAPK signaling. Contraction-stimulated phosphorylation of ERK1/2 and p38(MAPK) was completely inhibited by pretreatment with PD98059 (MAPK kinase inhibitor) and SB203580 (p38(MAPK) inhibitor), respectively. Muscle contraction also activated MAPK downstream targets p90 ribosomal S6 kinase (p90(Rsk)), MAPK-activated protein kinase 2 (MAPKAP-K2), and mitogen- and stress-activated protein kinase 1 (MSK1). Use of PD98059 or SB203580 revealed that stimulation of p90(Rsk) and MAPKAP-K2 most closely reflects ERK and p38(MAPK) stimulation, respectively. Stimulation of MSK1 in contracting skeletal muscle required the activation of both ERK and p38(MAPK). These data demonstrate that muscle contraction, separate from systemic influence, activates MAPK signaling. Furthermore, we are the first to show that contractile activity stimulates MAPKAP-K2 and MSK1.  相似文献   

15.
JNK, a member of the mitogen-activated protein kinases (MAPKs), is activated by the MAPK kinases SEK1 and MKK7 in response to environmental stresses. In the present study, the effects of CdCl2 treatment on MAPK phosphorylation and HSP70 expression were examined in mouse embryonic stem (ES) cells lacking the sek1 gene, the mkk7 gene, or both. Following CdCl2 exposure, the phosphorylation of JNK, p38, and ERK was suppressed in sek1-/- mkk7-/- cells. When sek1-/- or mkk7-/- cells were treated with CdCl2, JNK phosphorylation, but not the phosphorylation of either p38 or ERK, was markedly reduced, while a weak reduction in p38 phosphorylation was observed in sek1-/- cells. Thus, both SEK1 and MKK7 are required for JNK phosphorylation, whereas their role in p38 and ERK phosphorylation could overlap with that of another kinase. We also observed that CdCl2-induced HSP70 expression was abolished in sek1-/- mkk7-/- cells, was reduced in sek1-/- cells, and was enhanced in mkk7-/- cells. Similarly, the phosphorylation of heat shock factor 1 (HSF1) was decreased in sek1-/- mkk7-/- and sek1-/- cells, but was increased in mkk7-/- cells. Transfection with siRNA specific for JNK1, JNK2, p38, ERK1, or ERK2 suppressed CdCl2-induced HSP70 expression. In contrast, silencing of p38 or p38 resulted in further accumulation of HSP70 protein. These results suggest that HSP70 expression is up-regulated by SEK1 and down-regulated by MKK7 through distinct MAPK isoforms in mouse ES cells treated with CdCl2.  相似文献   

16.
17.
Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.  相似文献   

18.
The cysteine aspartyl protease caspase-9 is a critical component of the intrinsic apoptotic pathway. Activation of caspase-9 is inhibited by phosphorylation at Thr125, which is catalysed by the mitogen-activated protein kinases (MAPKs) ERK1/2 in response to growth factors, by the cyclin-dependent protein kinase CDK1-cyclin B1 during mitosis, and at a basal level by the dual-specificity tyrosine-phosphorylation regulated protein kinase DYRK1A. Here we show that inhibitory phosphorylation of caspase-9 at Thr125 is induced in mammalian cells by hyperosmotic stress. This response does not require ERK1/2 or ERK5, but it is diminished by ablation of DYRK1A expression by siRNA or chemical inhibition of DYRK1A by harmine. Phosphorylation of Thr125 in response to hyperosmotic stress is also reduced by chemical inhibition of p38 MAPK and is abolished in p38α−/− mouse embryonic fibroblasts. These results show that both DYRK1A and p38α play roles in the inhibitory phosphorylation of caspase-9 following hyperosmotic stress and suggest a functional interaction between these protein kinases. Phosphorylation of caspase-9 at Thr125 may restrain apoptosis during the acute response to hyperosmotic stress.  相似文献   

19.
Zhao LJ  Zhao P  Chen QL  Ren H  Pan W  Qi ZT 《Cell proliferation》2007,40(4):508-521
OBJECTIVE: Hepatitis C virus (HCV) is a major pathogenic factor of liver diseases. During HCV infection, interaction of the envelope protein E2 of the virion, with target cells, is a crucial process for viral penetration into the cell and its propagation. We speculate that such interaction may trigger early signalling events required for HCV infection. MATERIALS AND METHODS: Human liver cell line L-02 was treated with HCV E2. The kinase phosphorylation levels of mitogen-activated protein kinase (MAPK) signalling pathways in the treated cells were analyzed by Western blotting. The proliferation of the E2-treated cells was evaluated by MTT assay. RESULTS: HCV E2 was shown to be an efficient activator for MAPK pathways. Levels of phosphorylation of upstream kinases Raf-1 and MEK1/2 were seen to be elevated following E2 treatment and similarly, phosphorylation levels of downstream kinases MAPK/ERK and p38 MAPK also increased in response to E2 treatment, and specificity of kinase activation by E2 was confirmed. E2-induced MAPK/ERK activation was inhibited by the MEK1/2 inhibitor U0126 in a concentration-dependent manner. Blockage of relevant cellular receptors reduced activation of Raf-1, MEK1/2, MAPK/ERK and p38 MAPK by E2, indicating efflux of the E2 signal from extracellular to the intracellular spaces. Thus, kinase cascades of MAPK pathways were continuously affected by E2 presence. Moreover, enhancement of cell proliferation by E2 appeared to be associated with the dynamic phosphorylation of MAPK/ERK and p38 MAPK. CONCLUSION: These results suggest that MAPK signalling pathways triggered by E2 may be a potential target for prevention of HCV infection.  相似文献   

20.
The co-chaperone murine stress-inducible protein 1 (mSTI1), a Hsp70/Hsp90 organizing protein (Hop) homolog, functions as a physical link between Hsp70 and Hsp90 by mediating the formation of the mSTI1/ Hsp70/Hsp90 chaperone heterocomplex. We show here that mSTI1 is an in vitro substrate of cell cycle kinases. Casein kinase II (CKII) phosphorylates mSTI1 at S189, and cdc2 kinase (p34cdc2) at T198, substantiating a predicted CKII-p34cdc2-NLS (CcN) motif. The possible implications of this phosphorylation as a cell cycle checkpoint are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号