首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the nature of mutations occurring at the autosomal APRT locus in mismatch-repair-proficient and -deficient colorectal carcinoma cell lines. The analysis of mutations that result in APRT deficiency in a mismatch-repair-deficient strain of DLD-1 heterozygous for this locus enabled us to measure the rate of loss of the wild-type gene through deletion, recombination, or gene conversion as well as the rate of point mutation. The overall rate of mutation at the APRT locus in DLD-1 was elevated 100-fold compared with the mismatch-repair-proficient colorectal carcinoma cell line SW620. Loss of heterozygosity (LOH) at APRT accounted for only 4 to 9% of mutant strains derived from DLD-1, indicating a rate for these types of events of 4 x 10(-7) to 9 x 10(-7). In SW620 the rate of LOH at APRT was about 10-fold higher. LOH was not found at polymorphic markers within the same chromosome subband as APRT, indicating that only a limited portion of the chromosome was affected by these alterations. Chromosome painting of SWS620 mutants revealed that the loss of APRT occurred together with a substantial portion of the long arm of chromosome 16. Differences in the nature of base substitutions at APRT (e.g., the proportion of mutations resulting from transitions or transversions) in these tumor cell lines were also detected. There was also an important similarity---the presence of a mutant APRT gene with multiple base substitutions that may be the result of some sort of error-prone DNA synthesis.  相似文献   

2.
Neolignans such as obovatol, honokiol, and magnolol have been previously reported to show various biological activities including anti-inflammation and antitumor effects. This is the first demonstration on the in vivo antitumor effect of obovatol on human colorectal carcinoma SW620 cells. Nude mice were implanted with SW620 cells and fed with vehicle or 5mg/kg/d dose of obovatol for 20 days. Obovatol inhibited tumor growth that accounted for 50% decrease in tumor volume and 44.6% decrease in tumor weight at the end of the experiment without any adverse health effect. In nude mice bearing SW620-incubated tumor, obovatol exhibited more potent antitumor activity than honolkiol. In addition, DNA flow cytometric analysis shows that obovatol progresses to apoptosis as detected by flow cytometry after double staining with annexin V and propidium iodide. Thus, we suggest that obovatol is a potent inducer of cell apoptosis in SW620 cells, and a potent antitumor agent.  相似文献   

3.
为了探讨人野生型p53(wt-p53)基因增强大肠癌细胞化疗敏感性的分子生物学机制,将携带wt p53基因的质粒分别转染两种p53基因突变的人大肠癌细胞系HT-29及SW620,分析细胞中p53及细胞周期蛋白D1(cyclin D1)蛋白的表达水平;将化疗药物5 氟尿嘧啶(5-fluorouracil,5-FU)以不同浓度、不同时间分别作用于HT-29及SW620细胞,另外将已转染wt-p53基因的大肠癌细胞用5-FU进行诱导,Western印迹分析上述干预条件下细胞中p53蛋白及细胞周期蛋白D1表达水平的变化;流式细胞术检测wt p53基因联合5-FU组及对照组中细胞凋亡的改变情况.结果表明,wt-p53基因能增加癌细胞中细胞周期蛋白D1的表达,与wt-p53基因呈剂量依赖性关系;5-FU则降低其蛋白表达,与5-FU呈时间和剂量依赖性关系,而5-FU所致的细胞周期蛋白D1表达水平的降低在细胞预先转染了wt- p53基因时会被抑制;wt-p53基因与5-FU联合使用能提高大肠癌细胞凋亡率.结果提示,wt-p53基因可提高大肠癌细胞中细胞周期蛋白D1的表达水平,并抑制5-FU所致的细胞周期蛋白D1降解,从而提高大肠癌细胞对化疗药物5-FU的敏感性.  相似文献   

4.
Treatment of a plasmid shuttle vector (pZ189) with a combination of hydrogen peroxide and a ferric iron/EDTA complex prior to transfection and passage in simian (CV-1) cells increases the frequency of mutations at the supF locus by up to 60-fold over the spontaneous background. This increase in mutation frequency is abolished when the inhibitors desferrioxamine, superoxide dismutase, catalase or dimethyl sulfoxide are included in the initial reaction or when the iron/EDTA complex is omitted, a strong indication that the premutagenic damage arises as a result of direct attack by hydroxyl radical generated in a superoxide driven Fenton reaction. DNA sequence analysis of the mutated plasmids shows that 1) Deletions occuring in combination with base-substitutions arise in 22.5 percent of the induced mutants compared with only 3 percent of spontaneous mutants 2) Sixty percent of all induced deletion mutations involve the loss of a single base and 77 percent of these (20 out of 26) occur at two adenine-containing sites 3) The base-change spectrum of mutants arising in the treated plasmid population is marked by the predominance of mutants containing a single base-change and by an increase in changes at AT base pairs. These results provide direct information concerning the nature of mutations arising in mammalian cells as a result of hydroxyl radical mediated DNA damage.  相似文献   

5.
An understanding of how to safely apply intraoperative blood salvage (IBS) in cancer surgery has not yet been obtained. Here, we investigated the optimal dose of 137Cs gamma-ray irradiation for killing human hepatocarcinoma (HepG2), gastrocarcinoma (SGC7901), and colonic carcinoma (SW620) tumor cells while preserving co-cultured erythrocytes obtained from 14 healthy adult volunteers. HepG2, SGC7901, or SW620 cells were mixed into the aliquots of erythrocytes. After the mixed cells were treated with 137Cs gamma-ray irradiation (30, 50, and 100 Gy), tumor cells and erythrocytes were separated by density gradient centrifugation in Percoll with a density of 1.063 g/ml. The viability, clonogenicity, DNA synthesis, tumorigenicity, and apoptosis of the tumor cells were determined by MTT assay, plate colony formation, 5-ethynyl-2''-deoxyuridine (EdU) incorporation, subcutaneous xenograft implantation into immunocompromised mice, and annexin V/7-AAD staining, respectively. The ATP concentration, 2,3-DPG level, free Hb concentration, osmotic fragility, membrane phosphatidylserine externalization, blood gas variables, reactive oxygen species levels, and superoxide dismutase levels in erythrocytes were analyzed. We found that 137Cs gamma-ray irradiation at 50 Gy effectively inhibited the viability, proliferation, and tumorigenicity of HepG2, SGC7901, and SW620 cells without markedly damaging the oxygen-carrying ability or membrane integrity or increasing the oxidative stress of erythrocytes in vitro. These results demonstrated that 50 Gy irradiation in a standard 137Cs blood irradiator might be a safe and effective method of inactivating HepG2, SGC7901, and SW620 cells mixed with erythrocytes, which might help to safely allow IBS in cancer surgery.  相似文献   

6.
Mismatch repair (MMR) genes, such as Msh2, are classified as "mutator" genes, responsible for the microsatellite instability identified in many tumors. In the current study, the mutation frequency and mutational spectrum in thymic lymphoma arising in Msh2 deficient mice are investigated. Thymic lymphoma developed in Msh2-/- background displayed an eight to nine-fold increase in mutation frequency compared to the normal thymi in Msh2 deficient animals. Sequencing demonstrated significantly different mutational spectra between normal thymus tissue and thymic lymphomas in Msh2-/- mice (P=0.02). The tumor mutational spectrum is characterized by an increase in base substitutions occurring at A:T sites, and multiple mutations, as well as a minor increase in -1 frameshifts. We analyzed mutations in different parts of the tumors, and different regional hotspots could be identified. Several hotspot mutations that are a rare event in normal tissues were identified in the tumor tissues. We conclude that thymic lymphomas arising in Msh2 deficient genetic background are hypermutable and the altered mutational spectrum might be an indication of infidelity of DNA replication during tumorigenesis.  相似文献   

7.
The expression of programmed death ligand-1 (PD-L1) in tumor has been used as a biomarker to predict the anti-PD-L1 immunotherapy response. To develop a noninvasive imaging technique to monitor the dynamic changes in PD-L1 expression in colorectal cancer (CRC), we labeled an anti-PD-L1 monoclonal antibody with near-infrared (NIR) dye and tested the ability of the NIR-PD-L1-mAb probe to monitor the PD-L1 expression in CRC-xenografted mice by performing optical imaging. Consistent with the expression levels of PD-L1 protein in three CRC cell lines in vitro by flow cytometry and Western blot analyses, our in vivo imaging showed the highest fluorescence signal of the xenografted tumors in mice bearing SW620 CRC cells, followed by tumors derived from SW480 and HCT8 cell lines. We detected the highest fluorescent intensity of the tumor at 120 hours after injection of NIR-PD-L1-mAb. The highest fluorescence intensity was seen in the tumor, followed by the spleen and the liver in SW620 xenografted mice. In SW480 and HCT8 xenografted mice, however, the highest fluorescent signals were detected in the spleen, followed by the liver and the tumor. Our findings indicate that SW620 cells express a higher level of PD-L1, and the NIR-PD-L1-mAb binding to PD-L1 on the surface of CRC cells was specific. The technique was safe and could provide valuable information on PD-L1 expression of the tumor for development of a therapeutic strategy of personized targeted immunotherapies as well as treatment response of patients with CRC.  相似文献   

8.
Silibinin, a flavonolignan isolated from the milk thistle plant (Silybum marianum), possesses anti-neoplastic properties. In vitro and in vivo studies have recently shown that silibinin inhibits the growth of colorectal cancer (CRC). The present study investigates the mechanisms of silibinin-induced cell death using an in vitro model of human colon cancer progression, consisting of primary tumor cells (SW480) and their derived metastatic cells (SW620) isolated from a metastasis of the same patient. Silibinin induced apoptotic cell death evidenced by DNA fragmentation and activation of caspase-3 in both cell lines. Silibinin enhanced the expression (protein and mRNA) of TNF-related apoptosis-inducing ligand (TRAIL) death receptors (DR4/DR5) at the cell surface in SW480 cells, and induced their expression in TRAIL-resistant SW620 cells normally not expressing DR4/DR5. Caspase-8 and -10 were activated demonstrating the involvement of the extrinsic apoptotic pathway in silibinin-treated SW480 and SW620 cells. The protein Bid was cleaved in SW480 cells indicating a cross-talk between extrinsic and intrinsic apoptotic pathway. We demonstrated that silibinin activated also the intrinsic apoptotic pathway in both cell lines, including the perturbation of the mitochondrial membrane potential, the release of cytochrome c into the cytosol and the activation of caspase-9. Simultaneously to apoptosis, silibinin triggered an autophagic response. The inhibition of autophagy with a specific inhibitor enhanced cell death, suggesting a cytoprotective function for autophagy in silibinin-treated cells. Taken together, our data show that silibinin initiated in SW480 and SW620 cells an autophagic-mediated survival response overwhelmed by the activation of both the extrinsic and intrinsic apoptotic pathways.  相似文献   

9.
BACKGROUND: Human colon cancers have a high frequency of p53 mutations, and cancer cells expressing mutant p53 tend to be resistant to current chemo- and radiation therapy. It is thus important to find therapeutic agents that can inhibit colon cancer cells with altered p53 status. beta-Lapachone, a novel topoisomerase inhibitor, has been shown to induce cell death in human promyelocytic leukemia and prostate cancer cells through a p53-independent pathway. Here we examined the effects of beta-lapachone on human colon cancer cells. MATERIALS AND METHODS: Several human colon cancer cell lines, SW480, SW620, and DLD1, with mutant or defective p53, were used. The antiproliferative effects of beta-lapachone were assessed by colony formation assays, cell cycle analysis, and apoptosis analysis, including annexin V staining and DNA laddering analysis. The effects on cell cycle and apoptosis regulatory proteins were examined by immunoblotting. RESULTS: All three cell lines, SW480, SW620, and DLD1, were sensitive to beta-lapachone, with an IC(50) of 2 to 3 microM in colony formation assays, a finding similar to that previously reported for prostate cancer cells. However, these cells were arrested in different stages of S phase. At 24 hr post-treatment, beta-lapachone induced S-, late S/G2-, and early S-phase arrest in SW480, SW620, and DLD1 cells, respectively. The cell cycle alterations induced by beta-lapachone were congruous with changes in cell cycle regulatory proteins such as cyclin A, cyclin B1, cdc2, and cyclin D1. Moreover, beta-lapachone induced apoptosis, as demonstrated by annexin V staining, flow cytometric analysis of DNA content, and DNA laddering analysis. Furthermore, down-regulation of mutant p53 and induction of p27 in SW480 cells, and induction of pro-apoptotic protein Bax in DLD1 cells may be pertinent to the anti-proliferative and apoptotic effects of beta-lapachone on these cells. CONCLUSIONS: beta-Lapachone induced cell cycle arrest and apoptosis in human colon cancer cells through a p53-independent pathway. For human colon cancers, which often contain p53 mutations, beta-lapachone may prove to be a promising anticancer agent that can target cancer cells, especially those with mutant p53.  相似文献   

10.
灵芝中有效成分灵芝酸的抑制肿瘤作用研究   总被引:10,自引:1,他引:9  
本文采用了体外肿瘤细胞培养增殖抑制试验与体内肿瘤细胞抑制试验,结果显示灵芝酸在体外对肿瘤细胞株SW620、LS180、S180的增殖具有明显的抑制作用,体内抗肿瘤疗效试验显示灵芝酸对Lewis肺癌(足趾接种)具有一定的疗效,对荷Lewis肺癌的小鼠IL-2的生成及NK细胞的免疫活性均有一定的促进作用。因此可以认为灵芝酸通过直接细胞毒作用与激活免疫体系实现抑制肿瘤作用。  相似文献   

11.
不同生长期草菇提取物的生物活性研究   总被引:1,自引:0,他引:1  
马迪  冯娜  冯爱萍  韩伟  谭琦 《菌物学报》2016,35(10):1226-1233
对草菇不同生长期的菌丝体及子实体分别用95%乙醇提取,对获得的5个提取物进行了化学成分定性检验、HPLC图谱分析和体外抗肿瘤、抑制DPP-IV酶的活性研究。结果表明:草菇不同生长期的菌丝体及子实体中均含有生物碱、有机酸、甾类(或三萜)、糖类、氨基酸(蛋白)等物质。草菇4个生长期的菌丝体醇提物对正常细胞WPMY-1的增殖无抑制作用而对3种肿瘤细胞L1210、SW620、K562全部或部分的增殖有一定的抑制作用。说明这4个生长期的菌丝体醇提物具有抗肿瘤活性。子实体95%醇提物对肿瘤细胞L1210、SW620、K562和正常细胞WPMY-1的增殖均具有抑制作用,说明该部分可能具有细胞毒性。草菇不同生长期的菌丝体和子实体提取物均有一定抑制DPP-IV酶的活性,其中生长2周的菌丝体醇提物对DPP-IV酶的抑制活性较强,IC50值达到0.32mg/mL,该结果说明生长2周的草菇菌丝体具有最佳的抗肿瘤和降血糖潜力。  相似文献   

12.
13.
Anoikis, a Bax-dependent apoptosis triggered by detachment from the extracellular matrix, is often inhibited in metastatic cancer cells. Using a couple of isogenic human colon cancer cell lines derived either from the primary tumor (SW480) or from a lymph node metastasis (SW620), we found that only SW480 cells were sensitive to anoikis. Bim upregulation but not Mcl-1 degradation was determined to be a critical factor of anoikis initiation in SW480 cells. ERK-mediated phosphorylation targets Bim for ubiquitination and proteasomal degradation. A MEK inhibitor (PD0325901) was able to increase Bim expression in SW620 cells and to sensitize these cells to anoikis. Thus, in both cell lines anoikis is under the control of proteins of the Bcl-2 family. Most interestingly, the BH3-mimetic ABT-737 was found not only to increase the level of apoptosis in suspended SW480 cells but also to sensitize SW620 cells to anoikis. Accordingly, both cell lines cultured in suspension were found to be primed for death, as determined by the detection of Bcl-2:Bim and Bcl-xL:Bim complexes. In contrast, adherent SW480 and SW620 cells were resistant to ABT-737. This indicates that, whether or not they undergo anoikis, colon cancer cells that have detached from the extracellular matrix might go through a transient state, where they are sensitive to BH3 mimetics. This would confer to compounds such as Navitoclax or ABT-199 a therapeutic window where they could have anti-metastatic potential.  相似文献   

14.
DNA‐binding protein A (dbpA) is reported to be upregulated in many cancers and associated with tumor progress. The present study aimed to investigate the role of dbpA in 5‐fluorouracil (5‐FU)‐resistant and oxaliplatin (L‐OHP)‐resistant colorectal cancer (CRC) cells. We found that 5‐FU and L‐OPH treatment promoted the expression of dbpA. Enhanced dbpA promoted the drug resistance of SW620 cells to 5‐FU and L‐OHP. DbpA knockdown inhibited cell proliferation, induced cell apoptosis, and cell cycle arrested in SW620/5‐FU and SW620/L‐OHP cells. Besides, dbpA short hairpin RNA (shRNA) enhanced the cytotoxicity of 5‐FU and L‐OHP to SW620/5‐FU and SW620/L‐OHP cells. Meanwhile, dbpA shRNA inhibited the activation of the Wnt/β‐catenin pathway that induced by 5‐FU stimulation in SW620/5‐FU cells. Activation of the Wnt/β‐catenin pathway or overexpression of checkpoint kinase 1 (Chk1) abrogated the promoting effect of dbpA downregulation on 5‐FU sensitivity of CRC cells. Importantly, downregulation of dbpA suppressed tumor growth and promoted CRC cells sensitivity to 5‐FU in vivo. Our study indicated that the knockdown of dbpA enhanced the sensitivity of CRC cells to 5‐FU via Wnt/β‐catenin/Chk1 pathway, and DbpA may be a potential therapeutic target to sensitize drug resistance CRC to 5‐FU and L‐OHP.  相似文献   

15.
Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.  相似文献   

16.
The growth behavior of the two human colon tumor cell lines (SW 480, primary and SW 620, metastatic), originating from the same patient, was studied in six different serum-free media (SFM) [GF3, Chee's essential medium plus insulin, transferrin and selenium; GF3F, GF3 plus fetuin; GF4, GF3 plus linoleic acid-BSA; GF5, GF4 plus fetuin; GF5E, GF5 plus EGF; GF5T, GF5 plus triiodothyronine]. SW 480 grew in all of the SFM. In contrast, SW 620 grew only in four SFM. The cells did not grow in GF3 and GF4. When grown in SFM, SW 480 attached much more firmly to the dishes than SW 620 as determined by the time required to detach the cells with trypsin-EDTA (SW 480, greater than 20 min and SW 620, less than 5 min). It was speculated that SW 480 cells excrete proteins in SFM which influence attachment and growth of the cells. Growth behavior of SW 480 cells which did not grow in GF3, was studied using GF3 medium and SW 480 substratum dishes. SW 620 cells readily attached to the SW 480 substratum dishes and grew. Furthermore, when SW 620 cells were grown on substratum prepared from serum-supplemented medium incubated in the absence of cells (serum substratum), the cell growth was comparable to the cell growth on SW 480 substratum in GF3. Substratum from SW 480 cells and the serum substratum were compared for their components using SDS-PAGE system. The SW 480 substratum contains many more components than serum substratum. A protein band at 60 kD appears to be common in both SW 480 and serum substrata.  相似文献   

17.
目的:观察NDRG2对结肠癌SW620细胞侵袭、转移等生物学行为的影响,探讨其可能的调节机制。方法:用阳离子脂质体转染方法分别转染pcDNA3.1-Ndrg2和SiRNA-Ndrg2于SW620细胞内48h,上调/下调NDRG2的表达;检测NDRG2基因mRNA及蛋白表达水平的变化;通过划痕试验及transwell细胞侵袭试验进一步对上调/下调NDRG2表达水平后的结肠癌细胞迁移和侵袭能力进行分析。结果:pcDNA3.1-Ndrg2转染SW620后,NDRG2的mRNA和蛋白表达水平明显升高,细胞的迁移和侵袭能力下降;SiRNA-Ndrg2转染SW620后,NDRG2的mRNA和蛋白表达水平明显降低,细胞的迁移和侵袭能力上升,差异具有统计学意义(P〈0.05)。结论:NDRG2作为抑癌候选基因能够降低结肠癌细胞转移和侵袭能力。  相似文献   

18.
The SW620IR1 cell line was derived from SW620 human colon cells surviving to ionizing radiations. It shows an increased radiosensitivity and a higher yield of spontaneous chromosomal aberrations. In order to check whether altered reactive oxygen intermediates (ROI) metabolism is involved in this inherited phenotype, we compared the two cell lines for their radiation-induced modifications at the level of ROI production, antioxidant activities, and chromosomal aberrations. Compared to SW620, SW620IR1 cells exhibit a higher and more persistent ROI induction after various doses of ionizing radiations and a higher yield of dicentric chromosomes. They are also characterized by lower basal activities of glutathione peroxidase and manganese-containing superoxide dismutase, and lower ability to induce these antioxidant defenses after irradiation. Resumption of cell growth after irradiation coincides with maximal induction of antioxidant activities and normalization of ROI concentration. However, at that time radiation-induced chromosomal aberrations are not completely eliminated, leading to the proliferation of genetically unstable cells. These results indicate that the inherited sensitivity of SW620IR1 cells is associated with altered antioxidant activities resulting in higher and more prolonged oxidative stress after radiation exposure. They also suggest that the normalization of ROI levels allows these p53 mutant cells to resume proliferation although high levels of DNA damages are still persisting, thereby explaining the chromosomal instability observed as a delayed effect of radiation exposure.  相似文献   

19.
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second in females worldwide. Unfortunately 40-50% of patients already have metastatic disease at presentation when prognosis is poor with a 5-year survival of <10%. Reactive oxygen species (ROS) have been proposed to play a crucial role in tumor metastasis. We now show that higher levels of ROS accumulation are found in a colorectal cancer-derived metastatic cell line (SW620) compared with a cell line (SW480) derived from the primary lesion from the same patient. In addition, ROS accumulation can affect both the migratory and invasive capacity of SW480 and SW620 cells. To explore the molecular mechanism underlying ROS-induced migration and invasion in CRC, we have compared protein expression patterns between SW480 and SW620 cells using a two-dimensional electrophoresis-based proteomics strategy. A total of 63 altered proteins were identified from tandem MS analysis. Cluster analysis revealed dysregulated expression of multiple redox regulative or ROS responsive proteins, implicating their functional roles in colorectal cancer metastasis. Molecular and pathological validation demonstrated that altered expression of PGAM1, GRB2, DJ-1, ITGB3, SOD-1, and STMN1 was closely correlated with the metastatic potential of CRC. Functional studies showed that ROS markedly up-regulated expression of ITGB3, which in turn promoted an aggressive phenotype in SW480 cells, with concomitant up-regulated expression of STMN1. In contrast, knockdown of ITGB3 expression could mitigate the migratory and invasive potential of SW620 or H(2)O(2)-treated SW480 cells, accompanied by down-regulated expression of STMN1. The function of ITGB3 was dependent on the surface expression of integrin αvβ3 heterodimer. Furthermore, STMN1 expression and the PI3K-Akt-mTOR pathway were found to be involved in ROS-induced and ITGB3-mediated migration and invasion of colorectal cancer cells. Taken together, these studies suggest that ITGB3 plays an important role in ROS-induced migration and invasion in CRC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号