首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract.  The results of a phylogenetic analysis of Dermestidae (Coleoptera) based on the morphology of immature stages are presented and implications for the classification of the family are discussed. The monophyly of (( Orphilus ) + (Dermestidae) + (Endecatomidae (Bostrichidae + Anobiidae))) is strongly supported. Dermestidae, excluding Orphilus Erichson, forms a monophyletic group. The phylogenetic position of the Orphilinae remains enigmatic. The hypothesized relationships of the remaining dermestid subfamilies are (Thorictinae (Dermestinae (Attageninae (Megatominae + Trinodinae)))). Phylogenetically informative morphological characters of larvae and pupae are illustrated and described. Character state transformations implied by the phylogenetic hypothesis are discussed. New morphological observations are provided, including the first records of the presence of gastric caeca in the larva of Dermestes L., and the first report of the number of Malpighian tubules and the number of abdominal ganglia in Dermestidae, Bostrichidae, Anobiidae, Nosodendridae and Derodontidae. The form of the mandibular base is described for the first time for Thylodriini Beal and Trinodini Beal. The fossil record and distribution of extant Dermestidae are discussed in the light of the phylogenetic hypothesis. The origin of the family is hypothesized to be in the Late Cretaceous.  相似文献   

3.
The Ptinidae (Coleoptera: Bostrichoidea) are a cosmopolitan, ecologically diverse, but poorly known group of Coleoptera and, excluding a few economic pests, species are rarely encountered. This first broad phylogenetic study of the Ptinidae s.l. (i.e. including both the spider beetles and anobiids) examines relationships based on DNA sequence data from two mitochondrial genes (16S and COI) and one nuclear gene (28S), using out‐group taxa from both the Bostrichidae and Dermestidae. Topologies varied depending on the genes used and whether data were analysed with either parsimony or Bayesian methods. Generally the two mitochondrial genes supported relationships near the tips of the phylogeny, whereas the nuclear gene supported the basal relationships. The monophyly of the Ptinidae was not inferred by all of the gene combinations and analysis methods, although the combined Ptinidae and Bostrichidae have a single origin in all cases. Alternative relationships include the Ptinidae s.s. (i.e. Ptininae and Gibbiinae) as sister to the anobiids (i.e. the nine remaining subfamilies of Ptinidae s.l.) + Bostrichidae, or the Bostrichidae as sister to the Ptinidae s.s.+ anobiids. Most of the larger subfamilies within the Ptinidae are not monophyletic. Further analysis with more taxa and more genes will be required to clarify and decide upon the best hypothesis of relationships found within the clades of the Bostrichidae and Ptinidae. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 88–108.  相似文献   

4.
Abstract. One hundred and twenty-one morphological characters of larvae and adults of the series Staphyliniformia were scored (multistate coding) and analysed to determine the family group relationships of the polyphagan groups Scarabaeoidea, Histeroidea, Hydrophiloidea and Staphylinoidea. Cladograms were rooted with exemplars of Adephaga, Archostemata, Myxophaga and the polyphagan families Dascillidae, Derodontidae, Eucinetidae and Scirtidae. Analyses of the same dataset with multistate characters re-coded as presence/absence (144 characters) produced cladograms that were similar to those produced from analyses of the original characters. Cladograms produced from partitioned larval and adult characters differed strongly, with adult-only trees more similar to those produced by combined data. The results confirm the monophyly of Hydrophiloidea + Histeroidea and of Staphylinoidea (including Hydraenidae). The Epimetopidae + Georissidae are the only strongly supported clade within Hydrophiloidea. A clade comprising Hydrochidae, Spercheidae and Hydrophilidae, and a sister-group relationship between the latter two families were confirmed in analyses of the data with presence/absence coding. Helophoridae, Epimetopidae and Georissidae are probably not a monophyletic unit, and additional evidence is needed for a reliable placement of Helophoridae. Scarabaeoidea are placed as a sister taxon of Hydrophiloidea + Histeroidea, but support for this relationship is weak. The branching pattern ((Hydraenidae + Ptiliidae) + (Leiodidae + Agyrtidae)), and a clade comprising Scydmaenidae, Silphidae and Staphylinidae (= ‘staphylinid group’) are well founded. The branching pattern (Orchymontiinae + (Prosthetopinae + (Ochthebiinae + Hydraeninae))) within Hydraenidae is confirmed. Poor resolution at the base of the trees and the placement of some nonstaphyliniform taxa (Dascillidae, Derodontidae, Scirtidae and Eucinetidae) as a sister group to a clade comprising Scarabaeoidea, Hydrophiloidea and Histeroidea suggests that Staphyliniformia may be paraphyletic. It is recommended that series names are eliminated from the classification of Polyphaga, at least for the more ‘primitive’ groups.  相似文献   

5.
This paper reviews the occurrence of external exoskeletal cavities in beetles and provides critical reassessment of their possible mycangial function. In most reported cases, the decision to attribute mycangial function to exoskeletal cavities was based solely on the combination of two factors: (i) observation of these cavities on beetle's body; and (ii) knowledge that this particular beetle species uses fungi as a food source. Such reasoning resulted in the assumption, occasionally premature and not supported by other evidence, that exoskeletal pits in the following families may function as mycangia: Rhysodidae, Ptiliidae, Staphylinidae, Hybosoridae, Scarabaeidae, Derodontidae, Ptinidae, Jacobsoniidae, Boganiidae, Cryptophagidae, Endomychidae, Erotylidae, Latridiidae, Nitidulidae, Phloeostichidae, Silvanidae, Sphindidae, Pyrochroidae, Anthribidae, Attelabidae and Curculionidae. We conclude that only two beetle families include species with adequately documented cases of external exoskeletal mycangia: (i) Curculionidae (some Scolytinae and Platypodinae); and (ii) the structurally complex mycangia of Attelabidae ( Euops females). One or more species of Sphindidae, Erotylidae, Silvanidae, and Latridiidae have likely functional mycangia. Exoskeletal pits with uncertain function are additionally reported from the following families: Cupedidae, Ommatidae, Lepiceridae, Carabidae, Histeridae, Hydraenidae, Leiodidae, Elmidae, Artematopodidae, Throscidae, Elateridae, Rhinorhipidae, Biphyllidae, Cerylonidae, Cyclaxyridae, Monotomidae, Mycetophagidae and Zopheridae. We also discuss the transport of fungal spores and conidia by waxy exudates or debris build up on beetle exoskeleton, as well as their passive attachment to the body.  相似文献   

6.
Abstract. Characters of the head of larvae of Metrius contractus Eschscholtz, Ozaenini and Paussini are interpreted phylogenetically. The monophyly of Metriini + Ozaenini + Paussini is substantiated by several synapomorphies such as hyperprognathism and strong constriction of the neck. Ozaenini and Paussini together form the sister-group of Metriini. Ozaenini are paraphyletic. The monophyly of Paussini + Ozaenini excluding Pachyteles is indicated by two possible synapomorphies. Several synapomorphies are shared by Physea + Paussini. Secondary prognathism, large membranous submento-mental area and other derived features are considered autapomorphies of Paussini. Paussini excluding Platyrhopalopsis are characterized by the loss of the palpifer. The monophyly of a group which comprises Geadephaga excluding Trachypachini is suggested by several synapomorphic features. A very basal position of the metriine—paussine lineage within Carabidae is indicated by several plesiomorphic features. A hypopharyngeal filter apparatus with a dense fringe of well-arranged, long hairs is a possible autapomorphy of Anisochaeta. The results of this study do not indicate a close relationship between the metriine—paussine lineage and the tribes Brachinini and Crepidogastrini as has been suggested in recent works.  相似文献   

7.
Phylogenetic analysis of the New World Ptininae (Coleoptera: Bostrichoidea)   总被引:2,自引:0,他引:2  
A phylogenetic analysis of the New World Ptininae (Anobiidae) was conducted with representatives of nine of ten New World genera, several Old World genera and seven more of the ten subfamilies of Anobiidae. One hundred and two characters (forty‐three multistate) from thirty‐four taxa were used. The single cladogram shows Ptininae as monophyletic and the sister group of the remaining Anobiidae, supporting their placement as subfamilies of a monophyletic Bostrichidae. Genus Niptus Boieldieu is polyphyletic supporting recognition of Pseudeurostus Heyden and the creation of a new genus to encompass the remaining New World species of Niptus. Flightlessness has evolved a minimum of three times within Ptininae and myrmecophily has probably evolved three times within just the New World taxa. The classifications of Ptininae and the remaining Anobiidae are examined and the evolution of feeding habits, myrmecophily and wing loss are discussed.  相似文献   

8.
A systematic analysis of the genera in the Diplostomidae and Strigeidae was made using the Proterodiplostomidae as the outgroup. The Proterodiplostomidae was the family with the greatest preponderance of primitive characters and its monophyly was supported by the unique paraprostate gland. However, no character state supported the monophyly of the Diplostomidae sensu Dubois, 1970. That paraphyletic taxon was composed of 3 monophyletic groups: the pseudosuckerless Neodiplostomidae n. fam. had the most primitive character states of the 3 and its monophyly was based on characters in the neascus/neodiplostomulum metacercariae; the Bolbophoridae n. fam., with pseudosuckers, had its monophyly supported by characters present in the newly named prodiplostomulum metacercaria; and the emended Diplostomidae, also with pseudosuckers, had the most derived states and its monophyly was supported by characters present in the diplostomulum. The presence of pseudosuckers united the Bolbophoridae n. fam., the emended Diplostomidae, and the Strigeidae as a monophyletic assemblage. The Strigeidae had the most derived characters of these 3 taxa and its monophyly was supported by characters in the tetracotyle and the cup-shaped forebody and bilobed tribocytic organ of the adult. In general, the adult stages of these strigeoid families showed very conserved morphology and it was the metacercariae that possessed the innovations. The conserved adult morphology was typical of what one might expect if the intramolluscan stages were analyzed. Thus, the data were concordant with the view that the mollusc and vertebrate definitive host were the original hosts to the Digenea and that the second intermediate host and metacercaria were more recently intercalated. More specifically, the phylogeny of these groups suggested that ancestral bisegmented strigeoids originally infected reptiles, they subsequently radiated into birds with which they coevolved extensively, and on 5 separate occasions they radiated into mammals. The radiations into mammals were, by all available evidence, preceded by second intermediate host shifts from fish to amphibians.  相似文献   

9.
10.
External and internal features of the head of adults of Helophorus spp. were examined and described in detail. The 6 species under consideration show very little morphological variation. The only distinctive characters, which characterise groups of species, are the presence or absence of the mandibular retinaculum and the symmetric or asymmetric shape of the ultimate maxillary palpomere. Helophoridae is supported by several autapomorphies, e.g. a group of long hairs on the posterodorsal margin of galeomere II and the distinctly serrate hind margin of the right mola. Characters with a potential phylogenetic relevance are listed, presented as a data matrix and analysed cladistically. The monophyly of Hydrophiloidea + Histeroidea, Hydrophiloidea (excl. Hydraenidae), ((Helophoridae + Hydrochidae) + (Georissidae [+ Epimetopidae?])), Hydrophilidae and Sphaeridiinae was supported in all trees. The position of Spercheus remains ambiguous. It is either the sistergroup of the remaining Hydrophiloidea or of Hydrophilidae. Head structures of adults of Helophoridae and Hydrochidae show a remarkable similarity. The following apomorphic character states are shared by both taxa: dorsal side of labrum divided into 2 areas with different surface structure, mentum with 2 longitudinal ridges. A clade comprising these 2 families + Georissidae (and probably Epimetopidae) is supported by the metallic granulation of the dorsal side of the head capsule and a grooved frontoclypeal suture. The presence of tubular mandibular glands may be a derived groundplan feature of Hydrophiloidea + Histeroidea. The proposed interrelationships are partly in contrast to current hypothesis. The hypothesised character evolution may change, if a more extensive set of taxa (e.g. Horelophinae, Horelophopsinae) and characters, especially larval features are used (e.g. stigmatic atrium). Several derived characteristics of the clades listed above may have been secondarily lost in Hydrophilidae.  相似文献   

11.
External and internal structures of the head of adults of Clambus are described and illustrated in detail. The results are compared with structural features found in the clambid genus Calyptomerus, in representatives of other scirtoid families, and also in species of other coleopteran suborders, notably Myxophaga. The results tentatively support the monophyly of Scirtoidea and a close relationship between Clambidae and Eucinetidae is suggested by one shared derived feature of the mandible, a long and slender apical tooth with a serrate edge. The monophyly of Clambidae is very strongly supported and Acalyptomerus is probably the sistergroup of a clade Calyptomerus + Clambinae. Potential scirtoid autapomorphies are the loss of the dorsal tentorial arms, a bulging gula, a strongly transverse labrum, and a ridge separating the mediostipes from the lacinia. However, all these features are homoplasious. The monophyly of Clambidae is supported by modifications of the head capsule which is strongly flattened and broadened, by a deep clypeofrontal incision enabling vertical antennal movements, and a series of antennal features. Synapomorphies of Clambinae + Calyptomerus (Clambidae excluding Acalyptomerus) are the conglobate body form with the ventral side of the head capsule in contact with the mesocoxae, and compound eyes integrated in the contour of the head. The completely subdivided eye is an autapomorphy of Clambus. An entire series of features is shared by Clambidae (or Scirtoidea) and Myxophaga. Most of them are apomorphies that apparently evolved independently in both groups. However, the presence of well‐developed maxillary and labial glands is arguably a retained groundplan feature of Coleoptera, with parallel loss in Archostemata, Adephaga and various groups of Polyphaga. J. Morphol. 277:615–633, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Gyrinidae is a group of beetles with a unique specialization of swimming on the water surface. Heterogyrus milloti Legros (Heterogyrinae) from Madagascar is a species with various preserved plesiomorphic features. The information on the morphology and biology was very limited until recently, and the thoracic anatomy remained largely unknown. Consequently, the aim of the present study is to describe external and internal thoracic features of Heterogyrus Legros in detail and to interprete them with respect to their phylogenetic and functional significance, with a special focus on the unusual flight apparatus of Gyrinidae. Characters documented with innovative techniques are compared to conditions found in other gyrinid genera and other groups of Adephaga, including characters of other body parts and larvae. A data matrix with 144 characters of adults, larvae and eggs was compiled and analysed cladistically. Gyrinidae excluding Spanglerogyrus Folkers (Heterogyrinae + Gyrininae) is supported by many apomorphies, mainly by a unique locomotor apparatus with paddle‐like middle and hind legs. The results confirm Heterogyrus as the earliest diverging branch in Gyrinidae except Spanglerogyrus, implying a sister‐group relationship between this genus and Gyrininae, a clade comprising Gyrinini, Dineutini and Orectochilini. The presence of an opening between the mesanepisternum and elytra, reduction of the lateral metafurcal arms, loss of the metathoracic M. furcacoxalis lateralis, and modifications of the head, including the dorsal shift of the upper subcomponent of the compound eyes, are synapomorphies of the three tribes. The monophyly of Gyrinini is moderately well‐supported, whereas Orectochilini is strongly supported by different characters including a highly simplified but functioning flight apparatus. A clade comprising Orectochilini and the dineutine genera is suggested by synapomorphies of adults and larvae. The monophyly of Dineutini was supported in a recent study, but not by the characters analysed here. Features of adults, larvae and eggs indicate that Gyrinidae are the sister group to the remaining adephagan families, as suggested in some earlier morphology‐based studies and recent analyses of large molecular datasets.  相似文献   

13.
14.
Phylogenetic Relationships of the Suborders of Coleoptera (Insecta)   总被引:8,自引:0,他引:8  
One hundred seven external and internal characters of larval and adult representatives of 28 genera of the coleopteran suborders were analyzed cladistically. Four groups of Neuropterida were introduced as outgroup. The analysis yielded 18 trees with a minimum of 194 steps (CI 0.691). All trees support the monophyly of all four suborders and a branching pattern (Archostemata + (Adephaga + (Myxophaga + Polyphaga))). The presence of elytra with meso- and metathoracic locking devices, the specific hind-wing folding, the close connection of exposed sclerites, the absence of the mera, the absence of eight thoracic muscles, the reduced abdominal sternite I, and the invagination of terminal segments are autapomorphies of Coleoptera. The monophyly of Coleoptera excl. Archostemata is supported by further transformations of the thoracic sclerites such as absence of the mesothoracic discriminal line and katepisternal joint, by an internalized or absent metathoracic trochantin, by the presence of a bending zone in the hind-wing, and by eight further muscle losses. Fusion of tibia and tarsus and presence of a single claw are larval synapomorphies of Myxophaga and Polyphaga. Adults are characterized by fusion of protrochantin and propleura and by the rigid connection of the meso- and metathoracic ventrites. The eucinetoid lineage of Polyphaga is characterized by the secondary absence of the bending zone of the alae. This results in a distinctly simplified wing folding mechanism. The monophyly of Cucujiformia (+ Bostrichoidea) is supported by the presence of cryptonephric Malpighian tubules. Transformations of fore-and hind-wings, reinforcement and simplification of the thoracic exoskeleton, and an efficient use of a distinctly reduced set of thoracic muscles play an important role in the early evolution of Coleoptera. Many different larval character transformations take place in the earlier Mesozoic within the suborders.  相似文献   

15.
External and internal head structures of the larva of Tipula montium are described in detail. The results are compared to conditions found in other representatives of Tipuloidea and other dipteran and antliophoran lineages. Despite of the conceivably basal position of Tipulomorpha within Diptera, the larvae are mainly characterised by derived features. The partially retracted head, the specific hemicephalic condition and several other derived character states support the monophyly of Tipuloidea. A clade comprising Tipuloidea excluding Pediciidae is suggested by the strongly retracted head, by deep dorsolateral incisions of the head capsule, by a distinctly toothed anterior premental margin, by the loss of the second extrinsic maxillary muscle, and possibly by the loss of the pharyngeal filter. Eriopterinae and Hexatominae are characterised by a tendency towards an extreme reduction of the head capsule. Limoniinae, Cylindrotomidae, and Tipulidae form a clade supported by the presence of a premaxillary suture. This implies the non-monophyly of Limoniidae. A feature shared by Cylindrotomidae and Tipulidae is the presence of a movable lacinia mobilis. However, this is arguably a plesiomorphic feature, as it also occurs in Nannochoristidae. Features of the larval head of Trichoceridae, which were included in Tipulomorpha, do not show affinities with those of Tipuloidea. Trichocerid larvae share a specialised subdivided mandible with larvae of psychodomorph groups. Tipuloidea are a highly specialised group. The characters examined did not reveal plesiomorphic features supporting a basal position, and features suggesting closer affinities with Brachycera are vague. The evolution of dipteran larval head structures was apparently strongly affected by the loss of legs and the tendency to live in cryptic habitats. Diptera are the group of Endopterygota with the highest number of apomorphic features of the larval head. The appendages are generally simplified and the muscular apparatus is strongly reduced. Specialised features evolving within dipteran lineages include specifically arranged brushes of hairs on the labrum and epipharynx, movable messores, subdivided mandibles, different mandibular brushes, and a far-reaching reduction of labial parts.  相似文献   

16.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

17.
Abstract External and internal structures of the cerambycoid and triungulin larvae of Micromalthus debilis are described and compared to features found in larvae of other groups of Coleoptera. The morphological data are evaluated with respect to the systematic position of Micromalthidae. A cladistic analysis was carried out with fifty characters. Micromalthidae are not closely related to Lymexylidae (Polyphaga: Cucujiformia) but belong to Archostemata, which is confirmed as a monophyletic unit. Micromalthidae are specialized in terms of morphology and life cycle and are characterized by a considerable number of larval autapomorphies. Their sister-group relationship with Cupedidae is supported by several apomorphic features, which are probably correlated with xylobiontic habits: head transverse and strongly rounded laterally, absence of stemmata, shortened antennae, presence of sternal asperities and presence of eversible lobes of segment IX. Cupedidae is monophyletic and Priamca is the sister group of the remaining genera of Cupedidae included in the analysis. A closer relationship between Tenomerga and Rhipsideigma is supported by several larval synapomorphies. The ancestral life style of larvae of Archostemata was probably xylobiontic. This is suggested by derived groundplan features of the suborder, which are also found in larvae of non-related, wood-associated families.  相似文献   

18.
Phylogenetic analysis of Myxophaga (Coleoptera) using larval characters   总被引:1,自引:0,他引:1  
A phylogenetic parsimony analysis of fifty-four larval characters of Myxophaga (excluding Lepiceridae) resulted in two minimal length cladograms. The monophyly of Torridincolidae, Hydroscaphidae and Microsporidae is supported by several autapomorphies: miniaturization, flattened body with laterally extended tergites, broadened head, scale-like surface structures, broad tentorial bridge, disc-shaped labral sensilla, spiracular gills and pupation in the last larval exuviae. Hydroscaphidae are the sister group of Microsporidae. Larvae of both families are characterized by semi-entognathous mouthparts, tergites with posterior rows of lancet-shaped setae, claws with flattened basal spines and balloon-shaped spiracular gills. The monophyly of all families is supported by autapomorphies. Torridincolidae excluding Delevea is defined as a monophylum by four derived character states: body ovoid, thorax semicircular and as long as abdomen, labral sensilla fused and abdominal sternite IX distinctly reduced and triangular. The monophyly of Torridincolinae (sensu Endrödy-Younga 1997b) is supported by two autapomorphies. The proposed branching pattern suggests that the early representatives of Myxophaga (excluding Lepiceridae) were living in aquatic conditions with a preference for hygropetric habitats. The tendency to live on rocks in running water and miniaturization have played an important role in myxophagan evolution.  相似文献   

19.
20.
Abstract.  Fifty-four genera of the bee family Apidae comprising almost all tribes were analysed based on 77 traditional and one new character of the mature larvae. Nine, especially cleptoparasitic species, were newly added. Analyses were performed by maximum parsimony and Bayesian inference. Trees inferred from the analysis of the complete dataset were rooted by taxa from the families Melittidae and Megachilidae. Unrooted trees inferred from the analysis of the partial dataset (excluding outgroup taxa) are also presented to preclude possible negative effects of the outgroup on the topology of the ingroup. Only the subfamily Nomadinae was statistically well supported. The monophyly of the subfamilies Xylocopinae and Apinae was not topologically recovered. The monophyly of the tribe Tetrapediini was supported, and this tribe was found to be related to xylocopine taxa. At the very least, larval morphology suggests that Tetrapedia is not a member of the subfamily Apinae. Our analyses support the monophyly of the Eucerine line (Emphorini, Eucerini, Exomalopsini, Tapinotaspidini) and of the Apine line (Anthophorini, Apini, Bombini, Centridini, Euglossini, Meliponini). All analyses support the monophyly of totally cleptoparasitic tribes of the subfamily Apinae. We named this group the Melectine line (Ericrocidini, Isepeolini, Melectini, Osirini, Protepeolini, Rhathymini). In previous studies all these cleptoparasitic tribes were considered independent evolutionary lineages. Our results suggest that their similarities with hosts in morphology and pattern are probably the result of convergence and host–parasite co-evolution than phylogenetic affinity. According to the present analysis, the cleptoparasitism has evolved independently only six times within the family Apidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号