共查询到20条相似文献,搜索用时 15 毫秒
1.
J P Reeves 《Archives of biochemistry and biophysics》1977,183(1):298-305
Cells incubated at 41–46 °C show a gradual increase in the initial rate of 3-O-methylglucose uptake when subsequently assayed at 37 °C. Cellular ATP levels remain constant throughout this temperature range, but at temperatures higher than 46 °C, ATP levels decline as does the extent of transport stimulation. Cells incubated at 45 °C for 5 min continue to show a gradual increase in transport activity throughout a subsequent 25-min incubation period at 37 °C. The increase in transport activity is characterized by an increase in the proportion of the rapid phase of 3-O-methylglucose uptake, with little or no change in the half-time of either the rapid phase or the slow phase. Transport stimulation at high temperatures is blocked by inhibitors of oxidative phosphorylation. Cells depleted of intracellular exchangeable Ca2+ by treatment with the ionophore A23187 in the presence of ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid show nearly the same degree of stimulation at high temperatures as untreated cells, suggesting that exchangeable Ca2+ ions do not play an obligatory role in the mechanism of transport stimulation. It is suggested that structural changes occur at 41–46 °C in the membrane proteins controlling glucose transport activity. 相似文献
2.
J P Reeves 《The Journal of biological chemistry》1975,250(24):9413-9420
Transport of 3-O-methylglucose by rat thymocytes occurs by facilitated diffusion and follows a biphasic time course. The half-times of the two phases of uptake are 0.8 min and 20 to 30 min; the rapid phase contributes 10 to 20% of the total 3-O-methylglucose taken up at equilibrium. Cells incubated under anaerobic conditions for 1 hour undergo a 3- to 4-fold increase in the initial rate of 3-O-methylglucose uptake. The relative contribution of the rapid phase of uptake increases nearly 4-fold in anaerobically incubated cells, although the half-time of the rapid phase remains the same. Anaerobiosis also reduces the half-time of the slow phase of uptake by a factor of three. In the absence of exogenous glucose, anaerobiosis reduces cellular ATP by 97% after 1 hour at 37 degrees. However, full stimulation of transport activity does not occur in cells with such low levels of ATP. When anaerobically incubated cells are re-exposed to oxygen, ATP synthesis proceeds and transport activity increases by 100% within 5 to 10 min. Adding 1 mM 2,4-dinitrophenol at the time the anaerobic cells are reexposed to oxygen completely blocks the subsequent ATP synthesis and the associated increase in transport activity. Cells incubated aerobically in the presence of 1 mM 2,4-dinitrophenol show a 90% reduction in ATP levels and a 2-fold increase in the rate of 3-O-methylglucose uptake. An additional 70% increase in transport activity is observed when the cells are washed free of uncoupler and incubated an additional 10 min. The results suggest that transport activity is stimulated when cellular ATP levels decline but that the stimulation process requires some minimal level of ATP for full expression. 相似文献
3.
K Kitagawa H Nishino A Iwashima 《Biochemical and biophysical research communications》1985,128(1):127-133
Binding of phorbol-12,13-dibutyrate (PDBu), a tumor promoter, to quiescent Swiss 3T3 cells increased the number of hexose carriers, resulting in stimulation of membrane transport of 3-O-methylglucose (3MeGlu) in a Ca2+-dependent fashion. Extracellular Ca2+ was necessary to initiate the binding of PDBu to its receptor, and intracellular Ca2+ was required to maintain it. The loss of PDBu-binding, caused by elimination of Ca2+, was accompanied by a loss of stimulation of hexose transport. These results indicated that Ca2+-dependent, continuous binding of PDBu to its receptor was essential to induce the stimulation of hexose transport. 相似文献
4.
J P Reeves 《Journal of cellular physiology》1977,92(2):309-318
Rat thymocytes can be separated into two subpopulations by centrifugation for 20 minutes at 1,600 g in an 18/26/36% (w/v) discontinuous gradient of bovine serum albumin. Approximately 13% of the cells band at the 18/26% interface (light cells) while the remaining cells band at the 26/36% interface (heavy cells). In vitro and in vivo studies of 3H-thymidine incorporation indicate that the light cells are 2- to 3-fold enriched in the rapidly dividing lymphoblast subpopulation of thymocytes as compared to heavy cells. Light cells transport the non-metabolizable glucose analogue 3-O-methylglucose (3-MeGlc) approximately four times faster than heavy cells. The time course of 3-MeGlc uptake is biphasic for light, heavy and unfractionated thymocytes. While the half-times of the rapid (1 minute) and slow (20-45 minute) phases of uptake are similar for all three types of cells, the contributions of the rapid phase to total uptake are 50% for light cells, 20% for unfractionated thymocytes and 10% for heavy cells. The results show that 3-MeGlc transport activity differs markedly within certain thymocyte subpopulations. The correlation between the contributions of the rapid phase of uptake and the proportion of lymphoblasts in the thymocyte fractions suggests that the lymphoblast and small lymphocyte subpopulations might be responsible for the rapid and slow phase of 3-MeGlc uptake, respectively. 相似文献
5.
T R Hinds F L Larsen F F Vincenzi 《Biochemical and biophysical research communications》1978,81(2):455-461
Inside-out membrane vesicles were prepared from human red blood cells. In the presence of ATP, these vesicles took up 45Ca2+ against a chemical gradient. The active transport of Ca2+ was increased by addition of an activator protein of (Ca2++Mg2+)-ATPase isolated from the membrane-free hemolysate of human red blood cells. A closely related protein, the protein modulator of cyclic AMP phosphodiesterase from bovine brain, also increased the rate of active transport of 45Ca2+. Addition of the calcium ionophore A23187 caused a rapid efflux of 45Ca2+ from loaded, inside-out vesicles. When La3+ was added to the system in the presence of activator protein, the uptake of 45Ca2+ was inhibited. Results are compatible with the interpretation that activity of the plasma membrane Ca2+ pump may be modulated by certain cytoplasmic proteins. 相似文献
6.
Uptake of Ca2+ and refilling of intracellular Ca2+ stores in Ehrlich-ascites-tumour cells and in rat thymocytes. 下载免费PDF全文
We have studied the uptake of Ca2+ and its redistribution between the cytoplasm and the intracellular stores in Ehrlich-ascites-tumour cells and rat thymocytes previously depleted of Ca2+ by incubation in Ca2(+)-free medium. Measurements included changes of the cytoplasmic Ca2+ concentration ([Ca2+]i), uptake of 45Ca2+ and uptake of Mn2+, a Ca2+ surrogate for Ca2+ channels. Refilling of the Ca2+ stores in thymocytes was very fast (half-filling time: 4 s at 37 degrees C) and very sensitive to temperature (10 times slower at 20 degrees C). It was always preceded by increase of [Ca2+]i. In the Ehrlich cell, both refilling and increase of [Ca2+]i were about one order of magnitude slower. The increase of [Ca2+]i and the refilling of the intracellular stores were both almost completely blocked by Ni2+ in thymocytes, but only partially in the Ehrlich cell. The rates of 45Ca2+ and Mn2+ uptake varied consistently with temperature and the kind of cell. These results suggest that the intracellular stores are refilled by Ca2+ taken up from the cytoplasm. We also find that filling of the Ca2+ stores decreases by about 90% the rate of Mn2+ uptake in thymocytes. This is direct evidence of modulation of the plasma-membrane Ca2+ entry by the degree of filling of the intracellular stores. This modulation occurs in the absence of agonists, suggesting some kind of signalling between the intracellular stores and the Ca2+ entry pathways of the plasma membrane. 相似文献
7.
A S Gukovskaya V P Zinchenko V V Petrunyaka B I Khodorov Y V Evtodienko 《European journal of biochemistry》1986,161(1):249-256
The regulation of free Ca2+ concentration by intracellular pools and their participation in the mitogen-induced changes of the cytosolic free Ca2+ concentration, [Ca2+]i, was studied in digitonin-permeabilized and intact rat thymocytes using a Ca2+-selective electrode, chlortetracycline fluorescence and the Ca2+ indicator quin-2. It is shown that in permeabilized thymocytes Ca2+ can be accumulated by two intracellular compartments, mitochondrial and non-mitochondrial. Ca2+ uptake by the non-mitochondrial compartment, presumably the endoplasmic reticulum, is observed only in the presence of MgATP, is increased by oxalate and inhibited by vanadate. The mitochondria do not accumulate calcium at a free Ca2+ concentration below 1 microM. The non-mitochondrial compartment has a greater affinity for calcium and is capable of sequestering Ca2+ at a free Ca2+ concentration less than 1 microM. At free Ca2+ concentration close to the cytoplasmic (0.1 microM) the main calcium pool in permeabilized thymocytes is localized in the non-mitochondrial compartment. Ca2+ accumulated in the non-mitochondrial pool can be released by inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a number of cell types. Under experimental conditions in which ATP-dependent Ca2+ influx is blocked, the addition of IP3 results in a large Ca2+ release from the non-mitochondrial pool; thus IP3 acts by activation of a specific efflux pathway rather than by inhibiting Ca2+ influx. SH reagents do not prevent IP3-induced Ca2+ mobilization. Addition of the mitochondrial uncouplers, FCCP or ClCCP, to intact thymocytes results in no increase in [Ca2+]i measured with quin-2 tetraoxymethyl ester whereas the Ca2+ ionophore A23187 induces a Ca2+ release from the non-mitochondrial store(s). Thus, the data obtained on intact cells agree with those obtained in permeabilized thymocytes. The mitogen concanavalin A increases [Ca2+]i in intact thymocytes suspended in both Ca2+-containing an Ca2+-free medium. This indicates a mitogen-induced mobilization of an intracellular Ca2+ pool, probably via the IP3 pathway. 相似文献
8.
Ca2+ transport and Ca2+-dependent ATP hydrolysis by Golgi vesicles from lactating rat mammary glands. 总被引:5,自引:0,他引:5 下载免费PDF全文
Ca2+ transport across mammary-gland Golgi membranes was measured after centrifugation of the membrane vesicles through silicone oil. In the presence of 2.3 microM free Ca2+ the vesicles accumulated 5.8 nmol of Ca2+/mg of protein without added ATP, and this uptake was complete within 0.5 min. In the presence of 1 mM-ATP, Ca2+ was accumulated at a linear rate for 10 min after the precipitation of intravesicular Ca2+ with 10 mM-potassium oxalate. ATP-dependent Ca2+ uptake exhibited a Km of 0.14 microM for Ca2+ and a Vmax. of 3.1 nmol of Ca2+/min per mg of protein. Ca2+-dependent ATP hydrolysis exhibited a Km of 0.16 microM for Ca2+ and a Vmax. of 10.1 nmol of Pi/min per mg of protein. The stoichiometry between ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase varied between 0.3 and 0.7 over the range 0.03-8.6 microM-Ca2+. Both Ca2+ uptake and Ca2+-stimulated ATPase were strongly inhibited by orthovanadate, which suggests that the major mechanism by which Golgi vesicles accumulate Ca2+ is through the action of the Ca2+-stimulated ATPase. However, Ca2+ uptake was also decreased by the protonophore CCCP (carbonyl cyanide m-chlorophenylhydrazone), indicating that it may occur by other mechanisms too. The effect of CCCP may be related to the existence of transmembrane pH gradients (delta pH) in these vesicles: the addition of 30 microM-CCCP reduced delta pH from a control value of 1.06 to 0.73 pH unit. Golgi vesicles also possess a Ca2+-efflux pathway which operated at an initial rate of 0.5-0.57 nmol/min per mg of protein. 相似文献
9.
The release of Ca2+ from respiring rat liver mitochondria following the addition of either ruthenium red or an uncoupler was measured by a Ca2+-selective electrode or by 45Ca2+ technique. Ba2+ ions are asymmetric inhibitors of both Ca2+ release processes. Ba2+ ions in a concentration of 75 microM inhibited the ruthenium red and the uncoupler induced Ca2+ release by 80% and 50%, respectively. For the inhibition, it was necessary that Ba2+ ions entered the matrix space: Ba2+ ions did not cause any inhibition of Ca2+ release if addition of either ruthenium red or the uncoupler preceded that of Ba2+. The time required for the development of the inhibition of the Ca2+ release and the time course of 140Ba2+ uptake ran in parallel. Ba2+ accumulation is mediated through the Ca2+ uniporter as 140Ba2+ uptake was competitively inhibited by extramitochondrial Ca2+ and prevented by ruthenium red. Due to the inhibition of the ruthenium red insensitive Ca2+ release, Ba2+ shifted the steady-state extramitochondrial Ca2+ concentration to a lower value. Ba2+ is potentially a useful tool to study mitochondrial Ca2+ transport. 相似文献
10.
P Bernardi 《Biochimica et biophysica acta》1984,766(2):277-282
The independent pathway for Ca2+ efflux of rat liver mitochondria exhibits a sharp temperature and pH dependence. The Arrhenius plot displays a break at 18 degrees C, activation energy being about 117 kJ/mol below 18 degrees C and 59 kJ/mol above 18 degrees C. The pH profile is bell-shaped, with a broad optimum at pH 7.0. These properties of the efflux pathway, together with the membrane potential modulation recently described (Bernardi, P. and Azzone, G.F. (1983) Eur. J. Biochem. 134, 377-383), suggest an explanation for the phenomenon of rebounding Ca2+ transport. Addition of a Ca2+ pulse to respiring mitochondria causes (i) a phase of rapid Ca2+ uptake, leading to a decrease of extramitochondrial free Ca2+ to a lower level with respect to that maintained before Ca2+ addition, and (ii) a slower phase of net Ca2+ efflux, leading to restoration of the steady-state extramitochondrial free Ca2+ preceeding Ca2+ addition. Evidence is provided that the excess Ca2+ uptake is linked to transient inactivation of the efflux pathway due to membrane depolarization. Conversely, the efflux phase is linked to reactivation of the efflux pathway upon repolarization. The efflux component of the rebound cycle and the isolated efflux pathway exhibit similar dependence on temperature, pH and membrane potential. 相似文献
11.
Effect of calcium-binding protein regucalcin on Ca2+ transport system in rat liver nuclei: stimulation of Ca2+ release 总被引:1,自引:0,他引:1
Masayoshi Yamaguchi 《Molecular and cellular biochemistry》1992,113(1):63-70
The basis for the hypersensitive response of glycogen phosphorylase to epinephrine stimulation was investigated in adult rat cardiomyocytes isolated from normal and alloxan-diabetic animals. To assess potential G-protein involvement in the response, normal and diabetic derived myocytes were incubated with either cholera or pertussis toxin prior to hormonal stimulation. Pretreatment of cardiomyocytes with cholera toxin resulted in a potentiated response to epinephrine stimulation whereas pertussis toxin did not affect the activation of this signaling pathway. To determine if the enhanced response of phosphorylase activation resulted from an alteration in adenylate cyclase activation, the cells were challenged with forskolin. After 3 hr in primary culture, diabetic cardiomyocytes exhibited a hypersensitive response to forskolin stimulation relative to normal cells. However, after 24 hr in culture, both normal and diabetic myocytes responded identically to forskolin challenge. The present data suggest that a cholera toxin sensitive G-protein mediates the hypersensitive response of glycogen phosphorylase to catecholamine stimulation in diabetic cardiomyocytes and this response which is present in alloxan-diabetic cells and is induced in vitro in normal cardiomyocytes is primarily due to a defect at a post-receptor site. 相似文献
12.
The addition of nanomolar concentrations of free Fe2+, Mn2+, or Co2+ to rat liver plasma membranes resulted in an activation of ATP hydrolysis by these membranes which was not additive with the Ca2+-stimulated ATPase activity coupled to the Ca2+ pump. Detailed analysis showed that, if fact, (i) as for the stimulation of (Ca2+-Mg2+)-ATPase by Ca2+, activation of ATP hydrolysis by Fe2+, Mn3+, or Co2+ followed a cooperative mechanism involving two ions; (ii) two interacting sites for ATP were involved in the activation of both Fe2+- and Ca2+-stimulated ATPase activities; (iii) micromolar concentrations of magnesium caused the same dramatic inhibition of both activities; and (iv) the subcellular distribution of Fe2+-activated ATP hydrolysis activity corresponded to that of plasma membrane markers. This suggests that the (Ca2+-Mg2+)-ATPase might be stimulated not only by Ca2+, but also by Fe2+, Mn2+, or Co2+. However, interaction of (Ca2+-Mg2+)-ATPase with Fe2+, Mn2+, or Co2+ inhibited the Ca2+ pump activity. Furthermore, neither the formation of the phosphorylated intermediate of (Ca2+-Mg2+)-ATPase, nor ATP-dependent (59Fe) uptake could be detected in the presence of Fe2+ concentrations which stimulated ATP hydrolysis. We conclude that: (i) under the influence of certain metal ions, the Ca2+ pump in the liver plasma membrane may be switched to an uncoupled state which displays ATP hydrolysis activity, but does not insure ion transport; (ii) therefore the Ca2+ pump in liver plasma membranes specifically insures Ca2+ transport. 相似文献
13.
Synergistic stimulation of Ca2+ uptake by glucagon and Ca2+-mobilizing hormones in the perfused rat liver. A role for mitochondria in long-term Ca2+ homoeostasis. 下载免费PDF全文
A perfused liver system incorporating a Ca2+-sensitive electrode was used to study the long-term effects of glucagon and cyclic AMP on the mobilization of Ca2+ induced by phenylephrine, vasopressin and angiotensin. At 1.3 mM extracellular Ca2+ the co-administration of glucagon (10 nM) or cyclic AMP (0.2 mM) and a Ca2+-mobilizing hormone led to a synergistic potentiation of Ca2+ uptake by the liver, to a degree which was dependent on the order of hormone administration. A maximum net amount of Ca2+ influx, corresponding to approx. 3800 nmol/g of liver (the maximum rate of influx was 400 nmol/min per g of liver), was induced when cyclic AMP or glucagon was administered about 4 min before vasopressin and angiotensin. These changes are over an order of magnitude greater than those induced by Ca2+-mobilizing hormones alone [Altin & Bygrave (1985) Biochem. J. 232, 911-917]. For a maximal response the influx of Ca2+ was transient and was essentially complete after about 20 min. Removal of the hormones was followed by a gradual efflux of Ca2+ from the liver over a period of 30-50 min; thereafter, a similar response could be obtained by a second administration of hormones. Dose-response measurements indicate that the potentiation of Ca2+ influx by glucagon occurs even at low (physiological) concentrations of the hormone. By comparison with phenylephrine, the stimulation of Ca2+ influx by vasopressin and angiotensin is more sensitive to low concentrations of glucagon and cyclic AMP, and can be correlated with a 20-50-fold increase in the calcium content of mitochondria. The reversible uptake of such large quantities of Ca2+ implicates the mitochondria in long-term cellular Ca2+ regulation. 相似文献
14.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence, a Ca2+ release from terminal cysterns of skeletal muscle sarcoplasmic reticulum under effects of heparin, caffeine and Ca2+ has been studied. It was shown that Ca2+ release induced by heparin is insensitive to the blockers of Mg2+-dependent system of Ca2+-induced Ca2+ release, i.e., Mg2+, tetracaine and dimethylsulfoxide. Preliminary release of Ca2+ in the presence of caffeine, which activates Mg2+-dependent Ca2+ release, does not prevent the heparin-induced Ca2+ release. At the same time, after Ca2+ release caused by Ca2+ in a Mg2+-independent system, heparin cannot cause additional efflux of Ca2+. It has been shown that the heparin-induced release of Ca2+ diminishes with a decrease in a decrease in Ca2+ concentration. This effect is less pronounced in the presence of Na+ than with K+. The data obtained suggest that sarcoplasmic reticulum terminal cysterns contain two systems of Ca2+-induced release of Ca2+, i.e., a Mg2+-dependent, caffeine-sensitive and a Mg2+-independent heparin-sensitive ones. The mechanism of activation of both systems by caffeine and heparin consists, in all probability, in their increased affinity for Ca2+. 相似文献
15.
Development of myometrium in young female rats was stimulated by administration of diethylstilboestrol. Plasma membrane and sarcoplasmic reticulum from rat myometrium were separated by a new and rapid method using a Percoll gradient. Calcium uptake was inhibited in plasma membrane vesicles isolated from oxytocin-treated myometrium, while no consistent effect of oxytocin was found on the Ca2+ uptake in the sarcoplasmic reticulum. Oxytocin regulated the plasma membrane Ca2+ pump by decreasing its apparent affinity for Ca2+ without affecting its maximal velocity. The K1/2 for Ca2+ in the absence of calmodulin was 0.41 +/- 0.04 microM in normal membranes; this was increased to 0.93 +/- 0.12 microM in oxytocin-treated membranes. Calmodulin decreased the K1/2 for Ca2+ to 0.27 +/- 0.027 microM and oxytocin also increased this, to 0.46 +/- 0.061 microM. The effect of oxytocin on the plasma membrane Ca2+ pump was highly dependent on the hormonal status of the animals. When the diethylstilboestrol was administered together with progesterone, the inhibitory action of oxytocin was totally suppressed, consistent with the expected action of this agent. The results suggest that regulation of the plasma membrane Ca2+ pump may be important in the prolonged elevation of intracellular Ca2+ caused by oxytocin. 相似文献
16.
17.
Synergistic stimulation of the Ca2+ influx in rat hepatocytes by glucagon and the Ca2+-linked hormones vasopressin and angiotensin II 总被引:10,自引:0,他引:10
Glucagon was added to isolated rat hepatocytes, either alone or together with vasopressin or angiotensin II, and the effects on the initial 45Ca2+ uptake rate were investigated. Addition of glucagon alone which increased cyclic AMP content of the cells slightly increased the initial 45Ca2+ uptake rate. When glucagon was added together with vasopressin or angiotensin II--both of which when added separately increase the initial 45Ca2+ uptake rate but did not affect the cellular content of cyclic AMP--the measured initial 45Ca2+ uptake rate was larger than the sum of that seen with each hormone alone. This indicates that glucagon and Ca2+-linked hormones synergistically enhanced the Ca2+ influx in rat hepatocytes. These effects of glucagon can be mimicked by dibutyryl cyclic AMP or forskolin, suggesting that cyclic AMP augments both the resting Ca2+ and the vasopressin- or angiotensin II-stimulated influx. Measurement of the initial 45Ca2+ uptake rate as a function of the extracellular Ca2+ concentration indicated that the increase in the Ca2+ influx resulting from single or combined glucagon and vasopressin administration occurred through a homogeneous population of Ca2+ gates. These hormones were found to raise both the apparent Km for external Ca2+ and the apparent Vmax of the Ca2+ influx. The maximal increase in these two parameters was observed when the two hormones were added together. This suggests that glucagon and vasopressin synergistically stimulate the same Ca2+ gating mechanism. The dose-response curves for the action of glucagon or vasopressin applied in the presence of increasing concentrations of vasopressin or glucagon, respectively, showed that each hormone increases the maximal response to the other without affecting its ED50. It is proposed that glucagon and the Ca2+-linked hormones control the cellular concentration of two intermediates which are both necessary to allow Ca2+ entry into the cells. 相似文献
18.
Conformational transitions in the Ca2+ + Mg2+-activated ATPase and the binding of Ca2+ ions. 下载免费PDF全文
We have studied the fluorescence of the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum labelled with fluorescein isothiocyanate. The change in intensity of fluorescein fluorescence caused by addition of Ca2+ to the labelled ATPase can be interpreted in terms of a two-conformation model for the ATPase, one conformation (E1) having a high affinity for Ca2+, the other (E2) a low affinity. Effects of Ca2+ as a function of pH allow an estimate of the effect of pH on the E1/E2 ratio, consistent with kinetic studies. A model is presented for binding of Ca2+ to the ATPase as a function of pH that is consistent both with the data on the E1/E2 equilibrium and with literature data on Ca2+ binding. 相似文献
19.
S C Chow G E Kass M J McCabe S Orrenius 《Archives of biochemistry and biophysics》1992,298(1):143-149
The immunotoxic environmental pollutant tri-n-butyltin (TBT) kills thymocytes by apoptosis through a mechanism that requires an increase in intracellular Ca2+ concentration. The addition of TBT (EC50 = 2 microM) to fura-2-loaded rat thymocytes resulted in a rapid and sustained increase in the cytosolic free Ca2+ concentration ([Ca2+]i) to greater than 1 microM. In nominally Ca(2+)-free medium, TBT slightly but consistently increased thymocyte [Ca2+]i by about 0.11 microM. The subsequent restoration of CaCl2 to the medium resulted in a sustained overshoot in [Ca2+]i; similarly, the addition of MnCl2 produced a rapid decrease in the intracellular fura-2 fluorescence in thymocytes exposed to TBT. The rates of Ca2+ and Mn2+ entry stimulated by TBT were essentially identical to the rates stimulated by 2,5-di-(tert.-butyl)-1,4-benzohydroquinone (tBuBHQ), which has previously been shown to empty the agonist-sensitive endoplasmic reticular Ca2+ store and to stimulate subsequent Ca2+ influx by a capacitative mechanism. The addition of excess [ethylenebis(oxyethylenenitrilo)]tetraacetic acid to thymocytes produced a rapid return to basal [Ca2+]i after tBuBHQ treatment but a similar rapid return to basal [Ca2+]i was not observed after TBT treatment. In addition, TBT produced a marked inhibition of both Ca2+ efflux from the cells and the plasma membrane Ca(2+)-ATPase activity. Also, TBT treatment resulted in a rapid decrease in thymocyte ATP level. Taken together, our results show that TBT increases [Ca2+]i in thymocytes by the combination of intracellular Ca2+ mobilization, stimulation of Ca2+ entry, and inhibition of the Ca2+ efflux process. Furthermore, the ability of TBT to apparently mobilize the tBuBHQ-sensitive intracellular Ca2+ store followed by Ca2+ and Mn2+ entry suggests that the TBT-induced [Ca2+]i increase involves a capacitative type of Ca2+ entry. 相似文献
20.
M Kh Ga?nutdinov R N Ishmukhamedov V Konov M B Luchenko S Mirmakhmudova 《Biokhimii?a (Moscow, Russia)》1988,53(2):196-204
A thermostable low molecular weight glycopeptide containing syalic acids, which uncouples mitochondrial oxidative phosphorylation, has been detected, isolated and purified from rat liver cytoplasm. In the presence of the glycopeptide, oxidative phosphorylation in rat liver mitochondria is uncoupled by low physiological concentrations of Ca2+, which otherwise do not have any appreciable effect on the mitochondria. Oxidative phosphorylation uncoupling by the glycopeptide is accompanied by an increase of the mitochondrial volume. This process has a limited amplitude and is regulated by changes in Ca2+ concentration in the extramitochondrial space. The glycopeptide has been shown to induce K+ transport across the inner mitochondrial membrane, this effect is enhanced by Ca2+. 相似文献