首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenylate cyclase in cultured human fibroblasts is activated by prostaglandin E1 (PGE1) or beta-adrenergic agonists, e.g., isoproterenol, and inhibited by muscarinic agonists. Incubation with PGE1 reduced adenylate cyclase responsiveness to both PGE1 and isoproterenol; this so-called heterologous desensitization is believed to result from impaired function of the stimulatory guanyl nucleotide-binding protein of the cyclase complex. The effect of heterologous desensitization by PGE1 on inhibition of adenylate cyclase by the muscarinic agonist oxotremorine was examined. Muscarinic inhibition of basal and isoproterenol-stimulated cAMP accumulation was attenuated following exposure to PGE1; the concentration of oxotremorine required for half-maximal inhibition of cAMP accumulation was increased. In both intact cells and membrane preparations the number of binding sites for [3H]scopolamine, a muscarinic antagonist, was unaltered by desensitization. Following exposure to PGE1, receptor affinity for oxotremorine, assessed by competition with [3H] scopolamine, and the guanyl nucleotide sensitivity of agonist binding were reduced. The amount of inhibitory guanyl nucleotide-binding regulatory protein available for [32P]ADP-ribosylation by pertussis toxin was unaltered by desensitization. Thus, heterologous desensitization of adenylate cyclase with the stimulatory agonist PGE1 alters sensitivity to inhibitory as well as stimulatory ligands.  相似文献   

2.
The catecholamine-sensitive adenylate cyclase system appears to be comprised of at least three components; the beta-adrenergic receptor (R component), the catalytic unit of adenylate cyclase (C component) and a nucleotide regulatory protein (N component), responsible for mediating the effects of guanine nucleotides on the system. Cell fusion techniques were used to investigate the role of these three components in the process of homologous desensitization in the frog erythrocyte. Dicyclohexylcarbodiimide (DCCD) was used to inhibit beta-receptor function in one population of frog erythrocytes, whilst phenyl glyoxal was employed to inactivate the N and C components in a second population of frog erythrocytes. Using Sendai virus to fuse the two types of modified cell, heterologous beta-adrenergic receptor-adenylate cyclase systems were constructed which contained components from each cell type. When beta receptors from cells previously desensitized to catecholamines were coupled to N-C components derived from fresh erythrocytes, the resulting hybrid exhibited a densitized response to isoproterenol. By contrast, when beta-adrenergic receptors from fresh cells were coupled to N-C components derived from desensitized erythrocytes, no decreased responsiveness to isoproterenol was apparent in the hybrid. That this resensitization was the result of the addition of fresh beta-adrenergic receptors was demonstrated in a control experiment. Frog erythrocytes were desensitized simultaneously to catecholamines and prostaglandin E1 and modified with DCCD which inactivates the beta-adrenergic receptor but not the prostaglandin receptor. When fresh beta-adrenergic receptors were supplied by cell fusion to these doubly desensitized erythrocytes, only the beta-adrenergic response was restored to control levels. The response to prostaglandin remained desensitized in the hybrids, indicating that the observed resensitization of catecholamine-stimulated adenylate cyclase activity was specific and was due to the addition of fresh beta-adrenergic receptors. These data suggest that in the frog erythrocyte, homologous desensitization is primarily the result of receptor-related alterations.  相似文献   

3.
Preincubation of turkey erythrocytes with beta-adrenergic agonists leads to an attenuation of the responsiveness of adenylate cyclase to subsequent hormonal stimulation. Recently, our laboratory has shown (Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. D., Caron, M. G., and Lefkowitz, R. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3173-3177) using 32Pi incorporation that phosphorylation of the beta-adrenergic receptor accompanies this desensitization process. We now report that, as determined from intracellular [gamma-32P] ATP specific activity measurements, this phosphorylation reaction occurs in a stoichiometric fashion. Under basal conditions there exists 0.75 +/- 0.1 mol of phosphate per mol of receptor whereas under maximally desensitized conditions this ratio increases to 2.34 +/- 0.13 mol/mol. This phosphorylation of the receptor is dose-dependent with respect to isoproterenol and exhibits a dose-response curve coincidental with that for isoproterenol-induced desensitization of adenylate cyclase. The time courses for receptor phosphorylation and adenylate cyclase desensitization are identical. In addition, the rate of resensitization of adenylate cyclase activity is comparable to the rate of return of the phosphate/receptor stoichiometries to control levels. Both the phosphorylation and desensitization reactions are pharmacologically specific as indicated by the high degree of stereoselectivity, rank order of catecholamines, and blockade by the specific beta-adrenergic antagonist, propranolol. Incubation of turkey erythrocytes with cAMP and cAMP analogs maximally activates cAMP-dependent protein kinase but only partially mimics isoproterenol in promoting phosphorylation of the receptor in concordance with their partial effects in inducing desensitization. Conversely, activators or inhibitors of Ca2+/calmodulin kinase or protein kinase C do not affect the isoproterenol-induced desensitization. These results indicate that desensitization of turkey erythrocyte adenylate cyclase is highly correlated with phosphorylation of the beta-adrenergic receptor and that these events are mediated, at least partially, by cAMP.  相似文献   

4.
Preincubation of turkey erythrocytes with isoproterenol results in an impaired ability of beta-adrenergic agonists to stimulate adenylate cyclase in membranes prepared from these cells. The biochemical basis for this agonist-induced desensitization was investigated using the new beta-adrenergic antagonist photoaffinity label [125I]p-azidobenzylcarazolol ([125I]PABC). Exposure of [125I]PABC-labeled turkey erythrocyte membranes to high intensity light leads to specific covalent incorporation of the labeled compound into two polypeptides, Mr approximately equal to 38,000 and 50,000, as determined by sodium dodecyl sulfate-polyacrylamide electrophoresis. Incorporation of [125I]PABC into these two polypeptides is completely blocked by a beta-adrenergic agonist and antagonist consistent with covalent labeling of the beta-adrenergic receptor. After desensitization of the turkey erythrocyte by preincubation with 10(-5) M isoproterenol, the beta-adrenergic receptor polypeptides specifically labeled by [125I]PABC in membranes prepared from desensitized erythrocytes were of larger apparent molecular weight (Mr approximately equal to 42,000 versus 38,000, and 53,000 versus 50,000) compared to controls. When included during the preincubation of the erythrocytes with isoproterenol, the antagonist propranolol (10(-5) M) inhibited both agonist-promoted desensitization of the adenylate cyclase and the altered mobility of the [125I]PABC-labeled receptor polypeptides. These data indicate that structural alterations in the beta-adrenergic receptor accompany the desensitization process in turkey erythrocytes.  相似文献   

5.
The PvuII fragment of human genomic clone LCV-517 which contains the entire coding region of a beta-adrenergic receptor gene was cloned into the SmaI site of the expression vector pMSG. The recombinant DNA was cotransfected with pRSVneo into mouse B-82 cells using the CaPO4 precipitation method. B-82 cells do not possess beta-adrenergic receptors but do contain prostaglandin E1 receptors that stimulate adenylate cyclase. Following transfection, several colonies expressing beta-adrenergic receptors were isolated. Analysis of ligand binding to expressed beta-receptors indicated that the protein encoded by the gene in clone LCV-517 was a beta 2-adrenergic subtype. Human beta 2-adrenergic receptors photoaffinity labeled with [125I]iodocyanopindolol diazirine migrated on sodium dodecyl sulfate-polyacrylamide gels consistent with a molecular mass of 68,000, demonstrating that the receptor is glycosylated to an extent of 25-30% by weight. Addition of isoproterenol to cultures of transfected cells resulted in a 3-4-fold stimulation of adenylate cyclase, an effect similar to that seen in control B-82 cells with prostaglandin E1. These data describe the production of stable murine clonal cell lines expressing human beta 2-adrenergic receptors and illustrate the utility of such lines in the biochemical and pharmacological characterization of receptor proteins.  相似文献   

6.
Brief (approximately 20-min) exposure of S49 lymphoma cells to beta-agonists such as isoproterenol leads to a homologous form of desensitization in which beta-agonist but not prostaglandin E1-sensitive or NaF-sensitive adenylate cyclase is reduced. The desensitized receptors (R) appear to be sequestered away from the effector system (guanine nucleotide regulatory protein (Ns) and adenylate cyclase (C)). Membrane perturbants such as polyethylene glycol are known to reorient membrane proteins and lipids. Thus, we fused agonist-desensitized S49 lymphoma cells to each other, using polyethylene glycol as fusogen, in an attempt to functionally reunite the R, N, and C components which might have become sequestered in microdomains of the plasma membrane during desensitization. Such treatment completely restored isoproterenol-stimulated adenylate cyclase to normal and re-established the ability of R and N to functionally couple as assessed by the ability to form a high affinity, guanine nucleotide-sensitive state of the receptor. These results support the concept that agonist-promoted sequestration plays a functionally significant role in the homologous desensitization of the beta-adrenergic receptor.  相似文献   

7.
Preincubation of duck erythrocytes with tumor promoting phorbol diesters or catecholamines leads to attenuation of adenylate cyclase activity. 12-0-Tetradecanoyl phorbol-13-acetate (TPA) and phorbol 12,13-dibutyrate treatment induced a 38% and 30% desensitization of isoproterenol-stimulated adenylate cyclase activity, respectively. In contrast, the inactive phorbol diester, 4 alpha-phorbol 12,13-didecanoate, was without effect in promoting adenylate cyclase desensitization. The catecholamine isoproterenol induced a 51% desensitization. Incubation of 32Pi labeled erythrocytes with TPA promoted a 3- to 4-fold increase in phosphorylation of the beta-adrenergic receptor as did incubation with isoproterenol. Treatment of the cells with both TPA and isoproterenol together resulted in desensitization and receptor phosphorylation which were no greater than those observed with either agent alone. These data suggest a potential role for protein kinase C in regulating beta-adrenergic receptor function.  相似文献   

8.
The role of beta-adrenoceptor regulation in the mechanisms controlling beta-adrenergic responsiveness in hepatocytes was explored, using primary monolayer cultures. When plated in vitro, these cells gradually acquire a strong catecholamine-sensitive adenylate cyclase activity and an enhanced ability to bind the beta-adrenoceptor ligand [125I]iodocyanopindolol (125ICYP). Examination of the time course showed that the increase in the number of 125ICYP binding sites was detectable within 1-2 h of culturing and slightly preceded the elevation of isoproterenol-responsive activity. Then the responsiveness rose steeply and between about 5-24 h it closely followed the increase in beta-receptor binding. Addition of isoproterenol (10 microM) to cells after 20 h of culturing caused a rapid homologous desensitization of the adenylate cyclase (50% after about 5 min). This was paralleled by a down-regulation of beta-adrenoceptors measured both in membrane particles and in total cell lysates. Removal of isoproterenol led to a resensitization of the adenylate cyclase, which was rapid and protein-synthesis-independent after a brief (10-min) desensitization, or slow and cycloheximide-sensitive after prolonged (4-h) exposure to the agonist. In both cases an up-regulation of the 125ICYP binding paralleled the recovery from refractoriness. In contrast, no concurring changes in 125ICYP binding were measured when the beta-adrenoceptor-linked adenylate cyclase activity was enhanced by pretreatment with pertussin toxin (islet-activating protein, IAP) or was desensitized by exposure of the cells to glucagon or 8-bromo-cAMP; however, these modulations of the adenylate cyclase were nonselective, since the pretreatments with IAP, glucagon or 8-bromo-cAMP affected both isoproterenol-sensitive and glucagon-sensitive activities. The results suggest that, in hepatocytes, regulation at the beta-adrenoceptor level is a major determinant for both short-term and long-term selective changes of the beta-adrenergic responsiveness.  相似文献   

9.
The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase involves a cyclic AMP-dependent lesion that is after the G-protein.  相似文献   

10.
We have used a recently developed cell-free system (cell lysate) derived from turkey erythrocytes to explore the potential role of cAMP-activated and other protein kinase systems in desensitizing the adenylate cyclase-coupled beta-adrenergic receptor. Desensitization by the agonist isoproterenol required more than simple occupancy of the receptor by the agonist since under conditions where adenylate cyclase was not activated, no desensitization occurred. As in whole cells, addition of cyclic nucleotides to the cell lysate produced only approximately 50% of the maximal isoproterenol-induced desensitization obtainable. Addition of the purified cAMP-dependent protein kinase holoenzyme plus isoproterenol to isolated turkey erythrocyte plasma membranes mimicked the submaximal desensitization induced in lysates by cAMP. This effect was entirely blocked by the specific inhibitor of the cAMP-dependent protein kinase. By contrast, maximal desensitization induced in lysates by isoproterenol was only approximately 50% attenuated by the protein kinase inhibitor. In the lysate preparations, isoproterenol was also shown to induce, in a stereospecific fashion, phosphorylation of the beta-adrenergic receptor. Phosphorylation promoted by isoproterenol was attenuated by cAMP-dependent protein kinase inhibitor to the same extent as desensitization (i.e. approximately 50%). Phorbol diesters also promoted receptor desensitization and phosphorylation in cell lysates. The desensitization was mimicked by incubation of isolated turkey erythrocyte membranes with partially purified preparations of protein kinase C plus phorbol diesters. In the cell lysate, calmodulin also promoted receptor phosphorylation and desensitization which was blocked by EGTA. Desensitization of adenylate cyclase by isoproterenol, phorbol diesters, and calmodulin was not observed to be additive. These findings suggest that: (a) multiple protein kinase systems, including cAMP-dependent, protein kinase C-dependent, and Ca2+/calmodulin-dependent kinases, are capable of regulating beta-adrenergic receptor function via phosphorylation reactions and that (b) cAMP may not be the sole mediator of isoproterenol-induced phosphorylation and desensitization in these cells.  相似文献   

11.
The beta-adrenergic receptor kinase is a cytosolic enzyme that specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor (beta AR). Beta AR kinase appears to be translocated from the cytosol to the plasma membrane when kin- S49 lymphoma cells are incubated with either beta-adrenergic agonists or prostaglandin E1, both of which act through receptors which stimulate adenylate cyclase. We report here that brief (approximately 20 min) exposure of wild type S49 lymphoma cells to somatostatin (which inhibits adenylate cyclase) promotes the translocation of beta AR kinase to an extent comparable to that observed in the presence of the beta agonist isoproterenol or prostaglandin E1. Beta AR kinase activity can be measured using either beta AR or rhodopsin, the retinal receptor for light, as a substrate. The translocation process triggered by somatostatin is rapid, reversible, and is associated with somatostatin receptor desensitization. The latter is apparent as an attenuation of the inhibition by somatostatin of forskolin-stimulated adenylate cyclase activity in membranes of S49 cells preincubated in the presence of the peptide. These results strongly suggest that beta AR kinase is able to phosphorylate and desensitize both stimulatory and inhibitory adenylate cyclase-coupled receptors, thus emerging as a general kinase that regulates the function of different receptors in an agonist-specific fashion.  相似文献   

12.
Incubation of human astrocytoma cells (1321N1) with low concentrations of isoproterenol results in a specific loss of responsiveness to catecholamines as evidenced by a decreased accumulation of cAMP in intact cells, a reduction in isoproterenol-stimulated adenylate cyclase activity, and a decrease in beta-adrenergic receptor density, as measured by the specific binding of 125I-hydroxybenzylpindolol. The kinetics of desensitization suggest the involvement of two different reactions. The initial reaction involves a rapid loss of adenylate cyclase activity with little loss of beta-adrenergic receptors. Subsequently, a slower reaction results in the loss of measurable beta-adrenergic receptors. The degree of loss of both parameters was similar after 24 h of desensitization. It is concluded that the loss of beta-adrenergic receptors is an event that occurs as a result of the initial uncoupling of the beta-receptor-linked adenylate cyclase.  相似文献   

13.
The beta-adrenergic receptor-coupled adenylate cyclase system has been investigated in normal and Werner's syndrome fibroblasts. The basal levels of cAMP in Werner and normal control cells were similar, whereas the isoproterenol-induced increase in cAMP levels was far less for Werner cells than for control cells. In the broken cell preparations isoproterenol stimulated the adenylate cyclase of only control cells, not of Werner cells, although NaF or prostaglandin E1 stimulated the enzyme of both cells to the same extent. The beta-adrenergic receptor concentrations analyzed with hydrophilic radioligand were nearly equal in Werner and in control cells. A reduction of functional activity of the beta-adrenergic receptor in Werner cells is thus suggested.  相似文献   

14.
Virtually all known biological actions stimulated by beta-adrenergic and other adenylate cyclase coupled receptors are mediated by cAMP-dependent protein kinase. Nonetheless, "homologous" or beta-adrenergic agonist-specific desensitization does not require cAMP. Since beta-adrenergic receptor phosphorylation may be involved in desensitization, we studied agonist-promoted receptor phosphorylation during homologous desensitization in wild-type S49 lymphoma cells (WT) and two mutants defective in the cAMP-dependent pathway of beta-agonist-stimulated protein phosphorylation (cyc- cannot generate cAMP in response to beta-adrenergic agonists; kin- lacks cAMP-dependent kinase). All three cell types demonstrate rapid, beta-adrenergic agonist-promoted, stoichiometric phosphorylation of the receptor which is clearly not cAMP mediated. The amino acid residue phosphorylated is solely serine. These data demonstrate, for the first time, that catecholamines can promote phosphorylation of a cellular protein (the beta-adrenergic receptor) via a cAMP-independent pathway. Moreover, the ability of cells with mutations in the adenylate cyclase-cAMP-dependent protein kinase pathway to both homologously desensitize and phosphorylate the beta-adrenergic receptors provides very strong support for the notion that receptor phosphorylation may indeed be central to the molecular mechanism of desensitization.  相似文献   

15.
Functional integrity of desensitized beta-adrenergic receptors   总被引:7,自引:0,他引:7  
The adenylate cyclase-coupled beta 2-adrenergic receptor of the frog erythrocyte has served as a useful model system for elucidating the mechanisms of catecholamine-induced densensitization. In this system, it has been previously demonstrated that agonist-induced refractoriness is associated with sequestration of the beta-adrenergic receptors in vesicles away from the cell surface and from their effector unit, the adenylate cyclase system (Stadel, J.M., Strulovici, B., Nambi, P., Lavin, T.N., Briggs, M.M., Caron, M.G., and Lefkowitz, R.J. (1983) J. Biol. Chem. 258, 3032-3038). These internalized beta-adrenergic receptors appear to be structurally intact as assessed by photoaffinity labeling, but their functional status has previously been unknown. In the present studies, we sought to assess the functionality of the sequestered vesicular receptors by fusing them to Xenopus laevis erythrocytes. This cell is suitable for such studies, since it has almost no detectable beta-adrenergic receptor or catecholamine-sensitive adenylate cyclase, but contains prostaglandin E1-stimulable adenylate cyclase. Fusion of beta-adrenergic receptor-containing vesicles from desensitized frog erythrocytes with X. laevis erythrocytes results in a 30-fold stimulation of the hybrid adenylate cyclase by the beta-adrenergic agonist isoproterenol. This effect was entirely blocked by the beta-antagonist propranolol. The catecholamine-sensitive adenylate cyclase activity established in the vesicle-Xenopus hybrids showed the characteristic agonist potency series of the donor frog erythrocyte beta 2-adrenergic receptor. Fusion of vesicles from desensitized frog erythrocytes in which the beta-adrenergic receptors had been inactivated with the group specific reagent dicyclohexylcarbodiimide, or of vesicles derived from control frog erythrocytes, which contain low amounts of beta-adrenergic receptor, did not establish catecholamine-sensitive adenylate cyclase activity in the hybrids. These data demonstrate that beta-adrenergic receptors internalized during desensitization retain their functionality when recoupled to an adenylate cyclase system from a different source. The functional uncoupling of these receptors during desensitization is thus more likely due to their sequestration away from the other components of the adenylate cyclase than to any alterations in the receptors themselves.  相似文献   

16.
In hepatocytes obtained from hypothyroid rats, phorbol myristate acetate (PMA) and vasopressin diminished the accumulation of cyclic AMP and the stimulation of ureagenesis induced by isoprenaline or glucagon without altering significantly the accumulation of cyclic AMP induced by forskolin. Pretreatment with PMA markedly reduced the stimulation of ureagenesis and the accumulation of cyclic AMP induced by isoprenaline or glucagon. In membranes from cells pretreated with PMA, the stimulation of adenylate cyclase induced by isoprenaline + GTP, glucagon + GTP or by Gpp[NH]p were clearly diminished as compared to the control, whereas forskolin-stimulated activity was not affected. The data indicate heterologous desensitization of adenylate cyclase. It was also observed that the homologous (García-Sáinz J.A. and Michel, B. (1987) Biochem. J. 246, 331-336) and this heterologous beta-adrenergic desensitizations were additive. Pertussis toxin treatment markedly reduced the heterologous desensitization of adenylate cyclase but not the homologous beta-adrenergic desensitization. It is concluded that the homologous and heterologous desensitizations involve different mechanisms. The homologous desensitization seems to occur at the receptor level, whereas the heterologous probably involves the guanine nucleotide-binding regulatory protein, Ns.  相似文献   

17.
Incubation of intact frog erythrocytes with 12-O-tetradecanoyl phorbol-13-acetate (TPA), a tumor-promoting phorbol diester which activates protein kinase C, results in an approximate two- to threefold increase in subsequently tested beta-adrenergic agonist-stimulated adenylate cyclase activity. This increase is due to an elevation in the Vmax of the enzyme rather than to a change in affinity for the agonist. TPA treatment of frog erythrocytes does not alter the affinity (KD) or the binding capacity (Bmax) for the beta-adrenergic antagonist [125I]cyanopindolol. In addition, agonist/[125I]cyanopindolol competition curves are not affected by TPA pretreatment nor is their sensitivity to guanine nucleotides. Incubation of frog erythrocyte membranes alone with TPA does not promote sensitization or activation of adenylate cyclase activity. Pretreatment of intact frog erythrocytes with TPA also produces approximately two- to threefold increases in basal, guanine nucleotide-, prostaglandin E1-, forskolin-, NaF-, and MnCl2-stimulated adenylate cyclase activities in frog erythrocyte membranes. This enhancement of adenylate cyclase activity by TPA is induced rapidly (t1/2 approximately equal to 5 min) and with an EC50 of about 10(-7) to 10(-6) M. Other tumor-promoting phorbol diesters or phorbol diester-like compounds including 4 beta-phorbol 12,13-dibutyrate, 4 beta-phorbol 12,13-didecanoate, and mezerein are effective in promoting enhanced adenylate cyclase activity. In contrast, phorbols such as 4 beta-phorbol, 4 alpha-phorbol 12,13-didecanoate, and 4-O-methylphorbol 12-myristate 13-acetate, which are inactive in tumor promotion and which do not activate protein kinase C, do not affect frog erythrocyte adenylate cyclase activity. These data are suggestive of a protein kinase C-mediated phosphorylation of one of the adenylate cyclase components that is distal to the receptor, i.e., the nucleotide regulatory and/or catalytic components.  相似文献   

18.
The beta-adrenergic receptor adenylate cyclase system of ventricular tissue was evaluated in a group of rats submitted to a progressive 10-wk running program on a treadmill and compared with that in a group of rats maintained sedentary during the same period. Adequate training was confirmed by a 46% increase in the gastrocnemius isocitrate dehydrogenase activity in the trained group [1.50 +/- 0.04 vs. 1.03 +/- 0.06 (SE) pmol.g-1.min-1; P less than 0.01). Binding studies with [125I]iodocyanopindolol showed a 13% reduction in the density of beta-adrenergic receptors in trained rats (42.6 +/- 2.1 vs. 49.0 +/- 2.1 fmol/mg; P less than 0.05) without any significant modification in the dissociation constant. The amount of [125I]iodocyanopindolol bound to beta-adrenoceptors in the high-affinity state was reduced by 16.6% in trained rats (12.5 +/- 0.9 vs. 15.0 +/- 0.5 fmol/mg; P less than 0.05) without any significant changes for those in the low-affinity state, indicating a decrease in the coupling between the beta-adrenergic receptors and the guanine stimulatory binding protein. Furthermore, although the basal and sodium fluoride-stimulated adenylate cyclase activities were similar in the two groups of rats, the response of adenylate cyclase maximally stimulated by 10(-5) M isoproterenol was reduced by 16% in trained rats (29.7 +/- 1.4 vs. 35.3 +/- 1.3 pmol.mg-1.min-1; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occurring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase.  相似文献   

20.
J M Stadel  R Rebar  S T Crooke 《Biochemistry》1987,26(18):5861-5866
Preincubation of turkey erythrocytes with isoproterenol is associated with (1) 50-60% attenuation of agonist-stimulated adenylate cyclase activity, (2) altered mobility of the beta-adrenergic receptor on sodium dodecyl sulfate-polyacrylamide gels, and (3) increased phosphorylation of the beta-adrenergic receptor. Using a low-cross-linked polyacrylamide gel, the beta-adrenergic receptor protein from isoproterenol-desensitized cells, labeled with 32P or with the photoaffinity label 125I-(p-azidobenzyl)carazolol, can be resolved into a doublet (Mr congruent to 37,000 and Mr congruent to 41,000) as compared to a single Mr congruent to 37,000 beta-adrenergic receptor protein from control erythrocytes. The appearance of the doublet was dependent on the concentration of agonist used to desensitize the cells. Incubation of erythrocytes with dibutyryl-cAMP did not promote formation of the doublet but decreased agonist-stimulated adenylate cyclase activity 40-50%. Limited-digestion peptide maps of 32P-labeled beta-adrenergic receptors using papain revealed a unique phosphopeptide in the larger molecular weight band (Mr congruent to 41,000) of the doublet from the agonist-desensitized preparation that was absent in the peptide maps of the smaller band (Mr congruent to 37,000), as well as control or dibutyryl-cAMP-desensitized receptor. These data provide evidence that maximal agonist-induced desensitization of adenylate cyclase coupled beta-adrenergic receptors in turkey erythrocytes occurs by a two-step mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号