首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feedback inhibition of the regulatory enzyme threonine deaminase by isoleucine provides an important level of enzymic control over branched chain amino acid biosynthesis in Escherichia coli. Cloning ilvA, the structural gene for threonine deaminase, under control of the trc promoter results in expression of active enzyme upon induction by isopropyl 1-thio-beta-D-galactoside to levels of approximately 20% of the soluble protein in cell extracts. High level expression of threonine deaminase has facilitated the development of a rapid and efficient protocol for the purification of gram quantities of enzyme with a specific activity 3-fold greater than previous preparations. The catalytic activity of threonine deaminase is absolutely dependent on the presence of pyridoxal phosphate, and the tetrameric molecule is isolated containing 1 mol of cofactor/56,000-Da chain. Wild-type threonine deaminase demonstrates a sigmoidal dependence of initial velocity on threonine concentration in the absence of isoleucine, consistent with a substrate-promoted conversion of the enzyme from a low activity to a high activity conformation. The enzymic dehydration of threonine to alpha-ketobutyrate measured by steady-state kinetics, performed at 20 degrees C in 0.05 M potassium phosphate, pH 7.5, is described by a Hill coefficient, nH, of 2.3 and a K0.5 of 8.0 mM. The negative allosteric effector L-isoleucine strongly inhibits the enzyme, yielding a value for nH of 3.9 and K0.5 of 74 mM whereas enzyme activity is greatly increased by L-valine, which yields nearly hyperbolic kinetics characterized by a value for nH of 1.0 and a K0.5 of 5.7 mM. Thus, these effectors promote dramatic and opposing effects on the transition from the low activity to the high activity conformation of the tetrameric enzyme.  相似文献   

2.
The essential tRNA-specific adenosine deaminase catalyzes the deamination of adenosine to inosine at the wobble position of tRNAs. This modification allows for a single tRNA species to recognize multiple synonymous codons containing A, C, or U in the last (3'-most) position and ensures that all sense codons are appropriately decoded. We report the first combined structural and kinetic characterization of a wobble-specific deaminase. The structure of the Escherichia coli enzyme clearly defines the dimer interface and the coordination of the catalytically essential zinc ion. The structure also identifies the nucleophilic water and highlights residues near the catalytic zinc likely to be involved in recognition and catalysis of polymeric RNA substrates. A minimal 19 nucleotide RNA stem substrate has permitted the first steady-state kinetic characterization of this enzyme (k(cat) = 13 +/- 1 min(-)(1) and K(M) = 0.83 +/- 0.22 microM). A continuous coupled assay was developed to follow the reaction at high concentrations of polynucleotide substrates (>10 microM). This work begins to define the chemical and structural determinants responsible for catalysis and substrate recognition and lays the foundation for detailed mechanistic analysis of this essential enzyme.  相似文献   

3.
Guanine deaminase (EC 3.5.4.3, guanine aminohydrolase [GAH]) was purified 3248-fold from human liver to homogeneity with a specific activity of 21.5. A combination of ammonium sulfate fractionation, and DEAE-cellulose, hydroxylapatite, and affinity chromatography with guanine triphosphate ligand were used to purify the enzyme. The enzyme was a dimer protein of a molecular weight of 120,000 with each subunit of 59,000 as determined by gel filtration and sodium dodecyl sulfate-gel electrophoresis. Isoelectric focusing gave a pI of 4.76. It was found to be an acidic protein, as evidenced by the amino acid analysis, enriched with glutamate, aspartate, alanine and glycine. It showed a sharp pH optimum of 8.0. The apparent Km for guanine was determined to be 1.53 X 10(-5) M at pH 6.0 and 2 X 10(-4) M for 8-azaguanine as a substrate at pH 6.0. The enzyme was found to be sensitive to p-hydroxymercuribenzoate inhibition with a Ki of 1.53 X 10(-5) M and a Ki of 5 X 10(-5) M with 5-aminoimidazole-4-carboxamide as an inhibitor. The inhibition with iodoacetic acid showed only a 7% loss in the activity at 1 X 10(-4) M and a 24% loss at 1 X 10(-3) M after 30 min of incubation, whereas p-hydroxymercuribenzoate incubation for 30 min resulted in a 91% loss of activity at a concentration of 1 X 10(-4) M. Guanine was the substrate for all of the inhibition studies. The enzyme was observed to be stable up to 40 degrees C, with a loss of almost all activity at 65 degrees C with 30 min incubation. Two pKa values were obtained at 5.85 and 8.0. Analysis of the N-terminal amino acid proved to be valine while the C-terminal residue was identified as alanine.  相似文献   

4.
L-serine deaminase of Escherichia coli   总被引:1,自引:2,他引:1       下载免费PDF全文
The native l-serine deaminase (l-serine hydrolyase, deaminating, EC 4.2.1.13) of Escherichia coli K-12, which seems to be a very labile protein, is rather stable in concentrated solution. Dilution rapidly inactivates it, but in the presence of a saturating concentration of l-serine the molecule is protected from inactivation. It is a very specific enzyme; l-serine is the sole substrate with a K(m) value of 6.60 x 10(-3)m. d-Serine and l-cysteine are competitive inhibitors. Substrate saturation curves of the native enzyme show sigmoid shape, whereas the enzyme liberated from the bacteria in the presence of l-serine exhibits normal Michaelis-Menten kinetics.  相似文献   

5.
6.
7.
A guanine insertion enzyme (tRNA transglycosylase) was purified to a homogeneous state from Escherichia coli B by ammonium sulfate fractionation and DEAE-cellulose, DEAE-Sephadex A-50, phosphocellulose, and Sephadex G-200 column chromatographies. The molecular weight of the enzyme, which appeared to be a single polypeptide, was 4.6 X 10(4) by sodium dodecyl sulfate gel electrophoresis. The enzyme catalyzes exchange of guanine with guanine located in the first position of the anticodon of tRNATyr, tRNAHis, tRNAAsn, and tRNAAsp, but unlike the enzymes isolated from rabbit reticulocytes and Ehrlich ascites tumor cells it does not catalyze the exchange of guanine with queuine (7-(3,4-trans-4,5-cis-dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanine) present in these tRNAs. The pH optimum of the reaction was 7.0, and the pH1 value was 4.6 to 4.8. The reaction required Mg2+ ion. 7-Methylguanine inhibited guanine insertion, but the other purine analogues tested were not inhibitory and could not replace guanine.20  相似文献   

8.
Total poly(A+) RNA derived from a mouse cell line with amplified adenosine deaminase genes was used as template to synthesize double-stranded cDNA. The cDNAs were inserted into the PstI site of the beta-lactamase gene in plasmid pBR322 following G-C tailing. After transformation into adenosine deaminase-deficient Escherichia coli hosts, recombinant plasmids containing functional murine adenosine deaminase cDNAs were identified by selecting for functional complementation. Analysis of plasmids containing functional adenosine deaminase cDNA sequences strongly suggested that adenosine deaminase expression resulted mainly from beta-lactamase/adenosine deaminase fusion proteins even when the adenosine deaminase codons were out-of-frame with respect to the beta-lactamase gene codons upstream. The nucleotide sequence of a 1.65-kilobase pair cDNA insert in one of the functional recombinant clones was determined and found to contain a 1056-nucleotide open reading frame. When this 1056-nucleotide open reading frame was inserted into a mammalian expression vector and introduced into monkey kidney cells, a high level of authentic mouse adenosine deaminase was produced. Nucleic acid blot analysis using a full-length adenosine deaminase cDNA clone as probe revealed that the mouse adenosine deaminase structural gene was at least 21 kilobase pairs in size and encoded three polyadenylated mRNAs. Analysis of the cDNA library from which the functional clones were isolated suggested that this approach of cloning functional mammalian adenosine deaminase cDNA clones by genetic complementation of enzyme-deficient bacteria could be accomplished even if the abundance of the adenosine deaminase mRNA sequences were as low as approximately 0.001%.  相似文献   

9.
An Escherichia coli virus T1-induced DNA methyltransferase was identified by activity gel analysis in homogenates of infected E. coli DNA-adenine-methylation-deficient strains. Although the Mr of this protein (31,000) is in the same range as that of the E. coli DNA adenine methyltransferase, the two proteins are not closely related; the E. coli dam gene does not hybridize with T1 DNA. Selective conditions for measurement of the T1 activity were developed, and the enzyme was purified to functional homogeneity, as shown by activity analysis in polyacrylamide gels. Requirements for optimal activity of the viral enzyme were determined to be pH 6.9, ionic strengths below 0.1 M KCl, and a temperature between 40 and 43 degrees C. The Km for S-adenosyl-L-methionine is 4.9 microM. The purified T1 DNA methyltransferase is capable of methylating adenine in 5'-GATC-3' sites in vitro.  相似文献   

10.
Purification of threonine deaminase from Escherichia coli   总被引:3,自引:0,他引:3  
  相似文献   

11.
Modulation of guanine deaminase   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Guanine deaminases purified from the 15000g supernatant fraction of iso-osmotic sucrose homogenates of rat and mouse liver and brain were tested for the influence of GTP and allantoin. 2. The suffixes A and B were assigned to the isoenzyme fractions eluted from DEAE-cellulose with the lower and the higher molarity of eluent respectively. Isoenzyme A from rat liver, the activity of which showed a sigmoid dependence on substrate saturation, was activated by GTP and inhibited by allantoin. Isoenzyme B, which had a hyperbolic substrate-saturation curve, was not influenced by GTP or allantoin. 3. Isoenzyme A from rat brain, the activity of which had a sigmoid dependence on substrate concentration, was stimulated by GTP. Isoenzyme B, which showed classical Michaelis-Menten kinetics, was inhibited by allantoin. 4. Mouse liver guanine deaminase was not influenced by either GTP or allantoin. 5. Isoenzyme A from mouse brain, which had a hyperbolic substrate-saturation curve, was not influenced by GTP or allantoin but isoenzyme B, with sigmoidal kinetics, was inhibited by allantoin. 6. Mg(2+) activated, or inhibited or did not have an effect on guanine deaminase, depending on the source of the enzyme. 7. The bearing of the above findings on the possible regulation of guanine deaminase activity in vivo is discussed.  相似文献   

12.
13.
Wolf J  Gerber AP  Keller W 《The EMBO journal》2002,21(14):3841-3851
We report the characterization of tadA, the first prokaryotic RNA editing enzyme to be identified. Escherichia coli tadA displays sequence similarity to the yeast tRNA deaminase subunit Tad2p. Recombinant tadA protein forms homodimers and is sufficient for site-specific inosine formation at the wobble position (position 34) of tRNA(Arg2), the only tRNA having this modification in prokaryotes. With the exception of yeast tRNA(Arg), no other eukaryotic tRNA substrates were found to be modified by tadA. How ever, an artificial yeast tRNA(Asp), which carries the anticodon loop of yeast tRNA(Arg), is bound and modified by tadA. Moreover, a tRNA(Arg2) minisubstrate containing the anticodon stem and loop is sufficient for specific deamination by tadA. We show that nucleotides at positions 33-36 are sufficient for inosine formation in mutant Arg2 minisubstrates. The anticodon is thus a major determinant for tadA substrate specificity. Finally, we show that tadA is an essential gene in E.coli, underscoring the critical function of inosine at the wobble position in prokaryotes.  相似文献   

14.
15.
The gene galE encoding UDP-galactose 4-epimerase was cloned into E. coli BL21(DE3) from the chromosomal DNA of E. coli strain K-12. High expression of the soluble recombinant epimerase was achieved in the cell lysate. In order to evaluate the use of this epimerase in enzymatic synthesis of important -Gal epitopes (oligosaccharides with a terminal Gal1,3Gal sequence), a new radioactivity assay (1,3-galactosyltransferase coupled assay) was established to characterize its activity in producing UDP-galactose from UDP-glucose. Approximately 2700 units (100 mg) enzyme with a specific activity of 27 U mg–1 protein could be obtained from one liter of bacterial culture. The epimerase was active in a wide pH range with an optimum at pH 7.0. This expression system established a viable route to the enzymatic production of -Gal oligosaccharides to support xenotransplantation research.  相似文献   

16.
The gene for the newly described d-amidase from Variovorax paradoxus (Krieg et al. 2002) was cloned and functionally expressed in Escherichia coli. Since native enzyme was available in minute amounts only, we determined the N-terminal sequence of the enzyme and utilized the Universal GenomeWalker Approach to make use of the common internal sequence of the amidase signature family. The high GC content of the gene made it necessary to employ an appropriate DNA polymerase in the amplification reactions. Thus, the sequence of the complete gene and the flanking regions was established. In independent experiments, the gene was then amplified from genomic DNA of V. paradoxus, expressed in E. coli, and characterized. The recombinant enzyme has a specific activity of 1.7 units/mg with racemic tert-leucine amide as substrate and is a homodimer of 49.6-kDa monomers.  相似文献   

17.
Escherichia coli promoters that are more active at low temperature (15 to 20 degrees C) than at 37 degrees C were identified by using the transposon Tn5-lac to generate promoter fusions expressing beta-galactosidase (beta-Gal). Tn5-lac insertions that resulted in low-temperature-regulated beta-Gal expression were isolated by selecting kanamycin-resistant mutants capable of growth on lactose minimal medium at 15 degrees C but which grew poorly at 37 degrees C on this medium. Seven independent mutants were selected for further studies. In one such strain, designated WQ11, a temperature shift from 37 degrees C to either 20 or 15 degrees C resulted in a 15- to 24-fold induction of beta-Gal expression. Extended growth at 20 or 15 degrees C resulted in 36- to 42-fold-higher beta-Gal expression over that of cells grown at 37 degrees C. Treatment of WQ11 with streptomycin, reported to induce a response similar to heat shock, failed to induce beta-Gal expression. In contrast, treatment with either chloramphenicol or tetracycline, which mimics a cold shock response, resulted in a fourfold induction of beta-Gal expression in strain WQ11. Hfr genetic mapping studies complemented by physical mapping indicated that in at least three mutants (WQ3, WQ6, and WQ11), Tn5-lac insertions mapped at unique sites where no known cold shock genes have been reported. The Tn5-lac insertions of these mutants mapped to 81, 12, and 34 min on the E. coli chromosome, respectively. The cold-inducible promoters from two of the mutants (WQ3 and WQ11) were cloned and sequenced, and their temperature regulation was examined. Comparison of the nucleotide sequences of these two promoters with the regulatory elements of other known cold shock genes identified the sequence CCAAT as a putative conserved motif.  相似文献   

18.
Aerolysin is a toxin (protein in nature) secreted by the strains of Aeromonas spp. and plays an important role in the virulence of Aeromonas strains. It has also found several applications such as for detection of glycosylphosphatidylinositol (GPI)-anchored proteins etc. A. hydrophila is a ubiquitous Gram-negative bacterium which causes frequent harm to the aquaculture. To obtain a significant amount of recombinant aerolysin in the active form, in this study, we expressed the aerolysin in E. coli under the control of T7 RNase promoter. The coding region (AerA-W) of the aerA gene of A. hydrophila XS91-4-1, excluding partial coding region of the signal peptide was cloned into the vector pET32a and then transformed into E. coli b121. After optimizing the expression conditions, the recombinant protein AerA-W was expressed in a soluble form and purified using His.Bind resin affinity chromatography. Recombinant aerolysin showed hemolytic activity in the agar diffusive hemolysis test. Western blot analysis demonstrated good antigenicity of the recombinant protein.  相似文献   

19.
During transition into stationary phase a large set of proteins is induced in Escherichia coli. Only a minority of the corresponding genes has been identified so far. Using the λplacMu system and a plate screen for carbon starvation-induced fusion activity, a series of chromosomal lacZ fusions (csi::lacZ) was isolated. In complex medium these fusions were induced either during late exponential phase or during entry into stationary phase. csi::lacZ expression in minimal media in response to starvation for carbon, nitrogen and phosphate sources and the roles of global regulators such as the alternative sigma factor sigma;S (encoded by rpoS), cAMP/CRP and the relA gene product were investigated. The results show that almost every fusion exhibits its own characteristic pattern of expression, suggesting a complex control of stationary phase-inducible genes that involves various combinations of regulatory mechanisms for different genes. All fusions were mapped to the E. coli chromosome. Using fine mapping by Southern hybridization, cloning, sequencing and/or phenotypic analysis, csi-5, csi-17, and csi-18 could be localized in osmY (encoding a periplasmic protein), glpD (aerobic glycerol-3-phosphate dehydrogenase) and glgA (glycogen synthase), respectively. The other fusions seem to specify novel genes now designated csiA through to csiF. csi-17(glpD)::lacZ was shown to produce its own glucose-starvation induction, thus illustrating the Intricacies of gene-fusion technology when applied to the study of gene regulation.  相似文献   

20.
Addition of purine compounds to the growth medium of Escherichia coli and Salmonella typhimurium causes repressed synthesis of the purine biosynthetic enzymes. The repression is mediated through a regulatory protein, PurR. To identify the co-repressor(s) of PurR, two approaches were used: (i) mutations were introduced into purine salvage genes and the effects of different purines on pur gene expression were determined; (ii) purine compounds which dictate the binding of the PurR protein to its operator DNA were resolved by gel retardation. Both the in vivo and the in vitro data indicated that guanine and hypoxanthine are co-repressors. The toxic purine analogues 6-mercaptopurine and 6-thioguanine also activated the binding of PurR to its operator DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号