首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This study reports the establishment ofα-amylase-producing human parotid pleomorphic adenoma cell lines (2HP and 2HP1) which have been maintained in culture for over 1 yr. The procedures required preparation of cellular clumps from tumor tissue and plating them on plasma clot or precoated dishes. During the initial phase of growth they required modified MCDB-153 medium without serum. When cells showed signs of degeneration they were changed to MCDB-153 medium containing first 2% and then 10% heat inactivated fetal bovine serum. Although cells grew well in MCDB-153 containing 10% serum, the epithelial cell morphology was not distinct. Therefore, the growth and morphology of cells grown in MCDB-10% serum were compared with those in RPMI growth medium containing 10% fetal bovine serum and F12 containing 10% agammaglobulin newborn bovine serum. Although the growth of cells was a little slower in F12 medium than those in MCDB and RPMI, the epithelial cell morphology was maintained better than in other growth media. The cells of 2HP and 2HP1 produce low levels ofα-amylase and relatively high levels ofα-amylase mRNAs of 1176 and 702 bp and contain neurofilament-160, a neuronal-specific marker. The cells of 2HP1 are tumorigenic when tested in athymic mice, but the cells of 2HP are not. The establishment of amylase-producing human parotid adenoma cell lines of different characteristics in culture provides a new opportunity to study the mechanisms of differentiation and transformation, and regulation ofα-amylase in these cells.  相似文献   

2.
Summary This study reports the isolation and characterization of a rat nontumorigenic parotid acinar cell clone (2RSG), a human nontumorigenic parotid acinar cell clone (2HPC8), and a human tumorigenic acinar clone (2HP1G). The levels ofα-amylase mRNAs detected when usingα-amylase cDNA of 1176 and 702 bp for hybridization were higher in 2RSG and 2HPC8 cells than their respective whole parotid glands. The level of these mRNAs decreased in 2HP1G cells. In contrast toα-amylase mRNAs levels, theα-amylase activity in cultured acinar cells was extremely low in comparison to whole glands, irrespective of species or cell status. The levels of proline-rich protein (PRP) mRNA and parotid secretory protein (PSP) mRNA detected when using PRP cDNA of 600 bp and PSP cDNA of 805 bp for hybridization were higher in 2RSG cells than those in rat parotid glands; the reverse was observed in 2HPC8 cells and human parotid glands. The levels of PRP mRNA and PSP mRNA in 2HPC8 and 2HP1G acinar cells were similar. The level of mRNA was not detectable in murine neuroblastoma cells (NBP2) using the sameα-amylase cDNA, PRP cDNA and PSP cDNA for hybridization. The PSP level in rat parotid gland was lower than that found in 2RSG cells; the reverse was observed in 2HPC8 cells and human parotid glands. The level of PSP in 2HP1G cells was higher than that found in 2HPC8 cells. Isoproterenol increased the cAMP level in 2RSG, 2HPC8, and 2HP1G clones, being most effective in 2RSG cells, and least effective in 2HPG cells. Prostaglandin E1 (PGE1) also increased cAMP level, being most effective in 2HPC8 cells and ineffective in 2HP1G cells, suggesting that the PGE1 receptor-linked adenylate cyclase becomes inactive upon transformation. These results suggest that the three clonal acinar cells from rat and human parotid glands reported here can be useful in comparative studies on regulation of growth, differentiation, and transformation.  相似文献   

3.
Summary The molecular mechanisms that regulate the synthesis of salivary proteins are unknown. The paucity of homogeneous cell populations of parotid acinar cells has become a limiting factor for such a study. Therefore, the establishment of immortalized clones of acinar cells is essential. This study has established primary cultures of rat and human parotid epithelial cells that are suitable for transfection with plasmid vectors, pSV2, pSV3, and pSV5 to generate immortalized cells in vitro. Among various techniques used, the rat and human parotid tissue or cellular clumps when restrained in chicken plasma clot allowed the outgrowth of epithelial cells that maintained epithelial cell morphology for over 4 wk. However, the initial growth requirements for rat and human parotid cells were different. The presence of 10% heat inactivated fetal bovine serum in supplemented MCDB-LB medium was essential for the outgrowth of rat parotid epithelial cells, but this was not needed for the outgrowth of human parotid epithelial cells. The growth of both human and rat parotid epithelial cells can be maintained in serum-free supplemented MCDB-LB. These primary cultures contained amylase-producing cells as demonstrated by immunofluorescent technique, and they were transfected with pSV2, pSV3, and pSV5 using primarily the calcium phosphate-DNA co-precipitation technique. After initial extensive cell death, many cells with epithelial cell morphology survived.  相似文献   

4.
Heng C  Chen Z  Du L  Lu F 《Biotechnology letters》2005,27(21):1731-1737
Alpha amylase gene from Bacillus licheniformis was mutated by site-directed mutagenesis to improve its acid stability. The mutant gene was expression in Bacillus subtilis under the control of the promoter of sacB gene which was followed by either the α-amylase leader peptide of Bacillus licheniformis or the signal peptide sequence of sacB gene of Bacillus subtilis. Both peptides efficiently directed the secretion of α-amylase from the recombinant B. subtilis cells. The extracellular α-amylase activities in two recombinants were 1001 and 2012 U ml−1, respectively. The purity of the recombinant product was confirmed by SDS-PAGE.  相似文献   

5.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

6.
GROWTEK bioreactor was used as modified solid-state fermentor to circumvent many of the problems associated with the conventional tray reactors for solid-state fermentation (SSF). Aspergillus oryzae IFO-30103 produced very high levels of α-amylase by modified solid-state fermentation (mSSF) compared to SSF carried out in enamel coated metallic trays utilizing wheat bran as substrate. High α-amylase yield of 15,833 U g−1 dry solid in mSSF were obtained when the fungus were cultivated at an initial pH of 6.0 at 32°C for 54 h whereas α-amylase production in SSF reached its maxima (12,899 U g−1 dry solid ) at 30°C after 66 h of incubation. With the supplementation of 1% NaNO3, the maximum activity obtained was 19,665 U g−1 dry solid (24% higher than control) in mSSF, whereas, in SSF maximum activity was 15,480 U g−1 dry solid in presence of 0.1% Triton X-100 (20% higher than the control).  相似文献   

7.
An extracellular raw-starch-digesting α-amylase was isolated from Geobacillus thermodenitrificans HRO10. The culture conditions for the production of α-amylase by G. thermodenitrificans HRO10 was optimized in 1.2–l bioreactor using full 24 and 32 factorial designs. From the optimal reaction conditions, a model (Y = − 594.206 − 0.178T2 − 8.448pH2 + 6.020TpH − 0.005T2pH2) was predicted, which was then used for α-amylase production. In the bioreactor studies, the enzyme yield under optimized conditions (pH 7.1, 49°C) was 30.20 U/ml, a 51% improvement over the results (19.97 U/ml) obtained when the traditional one-factor-at-a-time method was employed. This α-amylase does not require extraneous calcium ions for activity, which may be a commercially important observation.  相似文献   

8.
Arsenic (As) is a potential contaminant of groundwater as well as soil in many parts of the world. The effects of increasing concentration of As (25 μm and 50 μm As2O3) in the medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism i.e. α-amylase, β-amylase, starch phosphorylase and acid invertase were studied in germinating seeds of two rice cvs. Malviya-36 and Pant-12 during 0–120 h period. As toxicity in situ led to a marked decline in the activities of α-amylase, β-amylase in endosperms as well as embryoaxes of germinating rice seeds. The activity of acid invertase increased in endosperms as well as embryoaxes whereas starch phosphorylase activity declined in endosperms but increased in embryoaxes under As treatment. In endosperms a decline in starch mobilization was observed under As toxicity, however under similar conditions the content of total soluble sugars increased in embryoaxes. The observed inhibition in activities of amylolytic enzymes might contribute to delayed mobilization of endospermic starch which could affect germination of seeds in As polluted environment, while the induced acid invertase activity and increased sugar accumulation in embryoaxes could serve as a possible component for adaptation mechanism of rice seedlings grown under As containing medium.  相似文献   

9.
Morphologically normal and fertile transgenic plants of mungbean with two transgenes, bar and α-amylase inhibitor, have been developed for the first time. Cotyledonary node explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA105 harboring a binary vector pKSB that carried bialaphos resistance (bar) gene and Phaseolus vulgaris α-amylase inhibitor-1 (αAI-1) gene. Green transformed shoots were regenerated and rooted on medium containing phosphinothricin (PPT). Preculture and wounding of the explants, presence of acetosyringone and PPT-based selection of transformants played significant role in enhancing transformation frequency. Presence and expression of the bar gene in primary transformants was evidenced by PCR-Southern analysis and PPT leaf paint assay, respectively. Integration of the Phaseolus vulgaris α-amylase inhibitor gene was confirmed by Southern blot analysis. PCR analysis revealed inheritance of both the transgenes in most of the T1 lines. Tolerance to herbicide was evidenced from seed germination test and chlorophenol red assay in T1 plants. Transgenic plants could be recovered after 8–10 weeks of cocultivation with Agrobacterium. An overall transformation frequency of 1.51% was achieved.  相似文献   

10.
The gene encoding thermostable α-amylase from Bacillus licheniformis consisting of 483 amino acid residues (mature protein) was cloned and expressed in Escherichia coli under the control of T7 promoter. The analysis of the soluble and insoluble fractions after lyzing the host cells revealed that recombinant α-amylase was produced in insoluble aggregates. Despite being produced in the insoluble aggregates the recombinant enzyme was highly active with a specific activity of 408 U/mg.  相似文献   

11.
Summary Gene conversion, the non-reciprocal transfer of sequence information between homologous DNA sequences, has been reported in lower eukaryotes, mammals and in Escherichia coli. In an E. coli rec + strain, we established a plasmid carrying two different deleted neo genes (neoDL and neoDR) in an inverted orientation and then selected for homologous recombination events that had reconstructed an intact neo + gene. We found some plasmids that had apparently experienced intramolecular gene conversion. Further evidence, however, suggests that they are products of multiple rounds of reciprocal crossing-over,apparently involving two plasmid molecules. First, most of the Neo+ clones contained multiple types of Neo+ plasmids, although the frequency of producing the neo + clones was low. Second, all the neo + clones also contained, as a minority, one particular form of dimer, which can be formed by reciprocal crossing-over between neoDL of one plasmid molecule and neoDR of another plasmid molecule. Third, in reconstruction experiments, we cloned and purified this dimer and transferred it back into the rec + cells. The dimer gave rise to clones containing multiple types of neo + recombinant monomers, including those apparent gene conversion types, and containing only few molecules of this dimer plasmid.  相似文献   

12.
Summary High-frequency embryogenesis systems were established for hybrid yellow-poplar (Liriodendron tulipifera×L. chinense) and hybrid sweetgum (Liquidambar styraciflua×L. formosana) by modifying a medium originally developed for embryogenic yellow-poplar cultures. Embryogenic cultures of both hybrids, consisting of proembryogenic masses (PEMs), were initiated from immature hybrid seeds on an induction-maintenance medium (IMM) supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and casein hydrolyzate (CH). For hybrid yellow-poplar, as many as 2100 germinable somatic embryos per 4000 cells or cell clumps were produced when PEMs were grown in liquid IMM lacking CH, at a pH that varied with genotype (3.5 or 5.6), followed by size fractionation and plating on semisolid embryo development medium (DM; IMM lacking 2,4-D and BA) without CH, but supplemented with 4.0 mgl−1 (15 μM) abscisic acid. For hybrid sweetgum, up to 1650 germinable somatic embryos per 4000 cells or cell clumps were produced when PEMs were grown in liquid IMM without CH, but with 550 mgl−1 l-glutamine, 510 mg l−1 asparagine, and 170 mg l−1 arginine at pH 5.6. Somatic embryos developed from cell clumps on DM without any plant growth regulators or other supplements. Hundreds of somatic embryos of both hybrids were germinated on DM without CH, transferred to potting mix, and hardened off in a humidifying chamber for transfer to the greenhouse.  相似文献   

13.
The cloning of α-amylase gene ofS. occidentalis and the construction of starch digestible strain of yeast,S. cerevisiae AS. 2. 1364 with ethanol-tolerance and without auxotrophic markers used in fermentation industry were studied. The yeast/E.coli shuttle plasmid YCEp1 partial library ofS. occidentalis DNA was constructed and α-amylase gene was screened in S.cerevisiae by amylolytic activity. Several transformants with amylolysis were obtained and one of the fusion plasmids had an about 5.0 kb inserted DNA fragment, containing the upstream and downstream sequences of α-amylase gene fromS. occidentalis. It was further confirmed by PCR and sequence determination that this 5.0 kb DNA fragment contains the whole coding sequence of α-amylase. The amylolytic test showed that when this transformant was incubated on plate of YPDS medium containing 1 % glum and 1 % starch at 30°C for 48 h starch degradation zones could be visualized by staining with iodine vapour. α-amylase activity of the culture filtratate is 740–780 mU/mL and PAGE shows that the yeast harboring fusion plasmids efficiently secreted α-amylase into the medium, and the amount of the recombinant α-amylase is more than 12% of the total proteins in the culture filtrate. These results showed that α-amylase gene can be highly expressed and efficiently secreted inS. cerevisiae AS. 2.1364, and the promotor and the terminator of α-amylase gene fromS. occidentalis work well inS. cercvisiac AS. 2.1364.  相似文献   

14.
Pyrococcus woesei (DSM 3773) α-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)α-amyl and pYTB2α-amyl vectors obtained were used for expression of thermostable α-amylase or fusion of α-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of α-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation—they exhibit only 35% of total cell activity—and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable α-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75°C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95°C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90°C and 110°C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120°C. Maltose was the main end product of starch hydrolysis catalyzed by this α-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.  相似文献   

15.
Bacillus sp. GRE1 isolated from an Ethiopian hyperthermal spring produced raw-starch digesting, Ca2+-independent thermostable α-amylase. Enzyme production in shake flask experiments using optimum nutrient supplements and environmental conditions was 2,360 U l−1. Gel filtration chromatography yielded a purification factor of 33.6-fold and a recovery of 46.5%. The apparent molecular weight of the enzyme was 55 kDa as determined by SDS-PAGE. Presence or absence of Ca2+ produced similar temperature optima of 65–70°C. The optimum pH was in the range of 5.5–6.0. The enzyme maintained 50% of its original activity after 45 min of incubation at 80°C and was stable at a pH range of 5.0–9.0. The V max and K m values for soluble starch were 42 mg reducing sugar min−1 and 4.98 mg starch ml−1, respectively. Strong inhibitors of enzyme activity included Cu2+, Zn2+ and Fe2+. The enzyme coding gene and the deduced protein translation revealed a characteristic but markedly atypical homology to Bacillus species α-amylase sequences. The enzyme hydrolyzed wheat, corn and tapioca starch granules efficiently below their gelatinization temperatures. Rather than the higher oligosaccharides normally produced by Bacillus α-amylases operating at high temperatures, maltose was the major hydrolysis product with the present enzyme.  相似文献   

16.
Ke T  Ma XD  Mao PH  Jin X  Chen SJ  Li Y  Ma LX  He GY 《Biotechnology letters》2007,29(1):117-122
A truncated mutant α-amylase, Xa-S2, was obtained from Xanthomonas campestris wild type α-amylases (Xa-WT) through random mutagenesis that contained 167 amino acid residues (approx 65% shorter than that of Xa-WT). Secondary structure prediction implied that Xa-S2, would be unable to form the whole (β/α)8-barrel catalytic domain and did not have the three conserved catalytic residues of wild type α-amylase, but it still displays the starch-hydrolyzing activity. Xa-S2 was prepared, characterized and compared to the recombinant wild-type enzymes. The K m for starch was 32 mg/ml; activity was optimal at pH 6.2 and 30°C. In contrast, the K m for starch of Xa-WT was 8 mg/ml and optimal enzyme activity was at pH 6.0–6.2 and 45–50°C. Our results suggested that Xa-S2 is a new amylase with a minimal catalytic domain for hydrolyzing substrates with of α-1,4-glucosidic bonds. T. Ke and X. D. Ma contributed equally to this work  相似文献   

17.
Crude α-amylase preparations from seven Lepidoptera pests were susceptible to inhibition by salt-soluble proteins of bread wheat (Triticum aestivum L.) endosperm. Protein fractions that corresponded to tetrameric, dimeric, and monomeric wheat α-amylase inhibitors, were decreasingly effective against the insect α-amylase activity. To further confirm these results, purified inhibitors were tested against an α-amylase preparation fromEphestia kuehniella (Zeller). This preparation showed decreased activity when increasing amounts of an heterotetrameric inhibitor (reconstituted from its isolated subunits WTAI-CM2, -CM3 and -CM16) were assayed. Activity was only partially inhibited by homodimeric (WDAI-1, synonym 0.53; WDAI-2, synonym 0.19) and monomeric (WMAI-1, synonym 0.28) inhibitors.  相似文献   

18.
We developed an efficient method for sugar beet multiplication in vitro from excised immature inflorescence tips. On Murashige & Skoog medium supplemented with 4.4 μM 6-benzylamino- purine and 1.3 μM naphthaleneacetic acid, multiple bud clumps were induced from segments of inflorescence tips. The clumps proliferated rapidly. By radiation of small bud clumps at an appropriate dose and by directional selection for NaCl tolerance, we obtained salt-tolerant bud clumps and regenerated plantlets. The plants were vernalized and self-pollinated. The seeds of the regenerated plants were sown in pots of sand and irrigated every day with a solution of 342 mM NaCl. Some of the seeds germinated and grew normally in the 342 mM NaCl solution, exhibiting higher salt-tolerance than the control ones; such seedlings after the saline selection were transplanted to soil and the plants grew normally and produced plump root tuber similar to controls. The seeds from two selected lines germinated and grew for a few weeks in 513 mM NaCl solution before the seedlings withered. In saline soil where the salt concentration was about 154 mM, the yields of tuber from the plants of three salt-tolerant lines were about 45–50 tons ha−1, approximately 2.6–2.9 times of the controls. It is concluded that we have got salt-tolerant materials with good agronomic traits for sugar beet breeding via selection in vitro.  相似文献   

19.
Studies on the growth and respiration of batch suspension cultures of rice (Oryza sativa L.) in a reference medium containing Murashige-Skoog salts, 2% (w/v) sucrose and yeast extract are reported. It was found that the yeast extract contributed 70% of the phosphate in this medium, and that the cells grew equally well in continued subculture in a defined medium which contained 6 mM phosphate and 3% (w/v) sucrose and the remaining Murashige-Skoog salts. Cell clumps (up to 1.5 mm diameter) were prevalent in the initial cultures in the reference medium. In such cultures the critical O2 pressure of cell respiration was high (125 M), and ethanol accumulated. When cell clumps were routinely removed during several weekly subcultures on the defined medium cultures were obtained in which no clumps were present, the critical O2 pressures was decreased to 40 M and no ethanol accumulated.This work was supported by grant PCM-84-03542 from the U.S. National Science Foundation.  相似文献   

20.
An actinomycete strain 7326 producing cold-adapted α-amylase was isolated from the deep sea sediment of Prydz Bay, Antarctic. It was identified as Nocardiopsis based on morphology, 16S rRNA gene sequence analysis, and physiological and biochemical characteristics. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram activity staining of purified amylase showed a single band equal to a molecular mass of about 55 kDa. The optimal activity temperature of Nocardiopsis sp. 7326 amylase was 35°C, and the activity decreased dramatically at temperatures above 45°C. The enzyme was stable between pH 5 and 10, and exhibited a maximal activity at pH 8.0. Ca2+, Mn2+, Mg2+, Cu2+, and Co2+ stimulated the activity of the enzyme significantly, and Rb2+, Hg2+, and EDTA inhibited the activity. The hydrolysates of soluble starch by the enzyme were mainly glucose, maltose, and maltotriose. This is the first report on the isolation and characterization of cold-adapted amylase from Nocardiopsis sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号