首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) from Comamonas testosteroni belongs to the short chain dehydrogenase/reductase (SDR) protein superfamily and catalyzes the oxidoreduction of a variety of steroid substrates, including the steroid antibiotic fusidic acid. The enzyme also mediates the carbonyl reduction of non-steroidal aldehydes and ketones such as a novel insecticide. It is suggested that 3alpha-HSD/CR contributes to the bioremediation of natural and synthetic toxicants by C. testosteroni. Crystallization and structure analysis showed that 3alpha-HSD/CR is active as a dimer. Dimerization takes place via an interface axis which has exclusively been observed in homotetrameric SDRs but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSD/CR by the presence of a predominantly alpha-helical subdomain which is missing in all other SDRs of known structure. For example, 3alpha/20beta-HSD from Streptomyces hydrogenans exhibits two main subunit interfaces arranged about two non-crystallographic two-fold axes which are perpendicular to each other and referred to as P and Q. This mode of dimerization is, however, sterically impossible in 3alpha-HSD/CR because of a 28 amino acids insertion into the classical Rossmann-fold motif between strand betaE and helix alphaF. This insertion is masking helices alphaE and alphaF, thus preventing the formation of a four helix bundle and enables the dimerization via a P-axis interface. This type of dimerization in SDRs has never been observed in a crystal structure so far. The aim of this study was to investigate whether the lack of this predominantly alpha-helical subdomain keeps 3alpha-HSD/CR to be an active enzyme and whether, by an in silico approach, the formation of a homotetramer or even a novel oligomerization mode can be expected. Redesign of this interface was performed on the basis of site directed mutagenesis and according to other SDR structures by an approach combining "in silico" and "wet chemistry". Simulations of sterical and structural effects after different mutations, by applying a combination of homology modelling and molecular dynamic simulations, provided an effective tool for extensive mutagenesis studies and indicated the possibility of tetramer formation of truncated 3alpha-HSD/CR. In addition, despite lacking the extra loop domain, mutant 3alpha-HSD/CR was shown to be active towards a variety of standard substrates.  相似文献   

4.
5.
6.
3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) from Comamonas testosteroni is a key enzyme involved in the degradation of steroids and xenobiotic carbonyl compounds. The enzyme has recently been cloned and characterized by our group. A strong induction of enzyme activity is observed in the presence of steroids like testosterone. In the present investigation, two repressor proteins (Rep1 and Rep2) containing 78 and 420 amino acids, respectively, were found to regulate 3alpha-HSD/CR gene (hsdA) expression. Gel shift experiments showed that Rep2 binds to a 10 nucleotide sequence 9 bp upstream of the hsdA promoter. The deletion of this cis-regulating sequence significantly increases hsdA expression. About 1633 bp further upstream, a second ten nucleotide sequence, complementary to the first one, was found, which is also recognized by Rep2 and increases hsdA expression, if deleted. To purify the repressor proteins, the genes encoding each were cloned into His-tag expression vectors and overexpressed in Escherichia coli. Rep1 does not bind to DNA but may bind to 3alpha-HSD/CR mRNA as predicted by its secondary structure. Concluding from our data, induction of 3alpha-HSD/CR in C. testosteroni by steroids in fact appears to be a de-repression, where the steroidal 'inducer' prevents the binding of the two repressor proteins to the hsdA promoter and mRNA, respectively.  相似文献   

7.
3 Alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) from Pseudomonas testosteroni was shown to reduce the xenobiotic carbonyl compound metyrapone (MPON). Reversely, MPON reductase purified from mouse liver microsomes and previously characterized as aldehyde reductase, was competitively inhibited by 3 alpha-HSD steroid substrates. For MPON reduction both enzymes can use either NADH or NADPH as co-substrate. Immunoblot analysis after native and SDS gel electrophoresis of 3 alpha-HSD gave a specific crossreaction with the antibodies against the microsomal mouse liver MPON reductase pointing to structural homologies between these enzymes. In conclusion, there seem to exist structural as well as functional relationships between a mammalian liver aldehyde reductase and prokaryotic 3 alpha-HSD. Moreover, based on the molecular weights and the co-substrate specificities microsomal mouse liver MPON reductase and Pseudomonas 3 alpha-HSD seem to be members of the short-chain alcohol dehydrogenase family.  相似文献   

8.
Homogeneous 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) from rat liver cytosol displays 9, 11, and 15-hydroxyprostaglandin dehydrogenase activity. Using [14C]-PGF2 alpha as substrate the products of this reaction were separated by TLC and identified by autoradiography as PGE2 and PGB2. The purified enzyme catalyzes this reaction at a rate 200 times faster than cytosol. This corresponds to the rate enhancement observed when the enzyme is purified from cytosol using androsterone (a 3 alpha-hydroxysteroid) as substrate and suggests that it may represent a major 9-hydroxyprostaglandin dehydrogenase in this tissue. Although the 3 alpha-HSD has many properties in common with the 9-hydroxyprostaglandin dehydrogenase of rat kidney, rat kidney contains no protein that is immunodetectable with polyclonal antibody raised against the purified 3 alpha-HSD.  相似文献   

9.
10.
11.
3alpha-hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) from Comamonas testosteroni, a short chain dehydrogenase/reductase, catalyzes the oxidation of androsterone with NAD+ to form androstanedione and NADH. A catalytic triad of Ser-114, Tyr-155, and Lys-159 in 3alpha-HSD/CR has been proposed based on structural analysis and sequence alignment of the short chain dehydrogenase/reductase family. The 3alpha-HSD/CR-catalyzed reaction has not been kinetically analyzed in detail, however. In this study, we combined steady-state kinetics, site-directed mutagenesis, and pH profile to explore the function of Ser-114, Tyr-155, and Lys-159 in 3alpha-HSD/CR-catalyzed reaction. The catalytic efficiency of wild-type and mutants S114A, Y155F, K159A, and Y155F/K159A is 4.3 x 10(7), 7.3 x 10(4), 1.7 x 10(4), 2.4 x 10(5), and 71 m(-1)s(-1), respectively. The values of pKa on kcat/Km for the wild-type, S114A, Y155F, K159A, and Y155F/K159A are 7.2, 7.4, 8.4, 9.1, and 10.2, respectively. Mutant S114A/Y155F exhibits a pH-independent profile with 10(-5) times of wild-type activity at pH 10.5. The activity decreases as the pH lowers, which indicates that a functional group with an apparent pKa of 7.2 is involved in the general base catalysis for wild-type 3alpha-HSD/CR. The pKa shift to 9.1 for mutant K159A suggests the role of Lys-159 is to lower the pKa of the residues involved in the general base catalysis. Because pH dependence is observed for both S114A and Y155F mutants and pH independence is observed in S114A/Y155F, Tyr-155 may be important as a general base catalysis in the wild-type, whereas Ser-114 may act as a general base on mutant Y155F to catalyze the reaction.  相似文献   

12.
Evidence is reported for the existence of a structurally and functionally related and probably evolutionarily conserved class of membrane-bound liver carbonyl reductases/hydroxysteroid dehydrogenases involved in steroid and xenobiotic carbonyl metabolism. Carbonyl reduction was investigated in liver microsomes of 8 vertebrate species, as well as in insect larvae total homogenate and in purified 3 alpha-hydroxysteroid dehydrogenase preparations of the procaryont Pseudomonas testosteroni, using the ketone compound 2-methyl-1,2 di-(3-pyridyl)-1-propanone (metyrapone) as substrate. The enzyme activities involved in the metyrapone metabolism were screened for their sensitivity to several steroids as inhibitors. In all fractions tested, steroids of the adrostane or pregnane class strongly inhibited xenobiotic carbonyl reduction, whereas only in the insect and procaryotic species could ecdysteroids inhibit this reaction. Immunoblot analysis with antibodies against the respective microsomal mouse liver metyrapone reductase revealed strong crossrections in all fractions tested, even in those of the insect and the procaryont. A similar crossreaction pattern was achieved when the same fractions were incubated with antibodies against 3 alpha-hydroxysteroid dehydrogenase from Pseudomonas testosteroni. The mutual immunoreactivity of the antibody species against proteins from vertebrate liver microsomes, insects and procaryonts suggests the existence of structural homologies within these carbonyl reducing enzymes. This is further confirmed by limited proteolysis of purified microsomal mouse liver carbonyl reductase and subsequent analysis of the peptide fragments with antibodies specifically purified by immunoreactivity against this respective crossreactive antigen. These immunoblot experiments revealed a 22 kDa peptide fragment which was commonly recognized by all antibodies and which might represent a conserved domain of the enzyme.  相似文献   

13.
14.
Natural and synthetic steroid hormones excreted into the environment are potentially threatening the population dynamics of all kinds of animals and public health. We have previously isolated a steroid degrading bacterial strain (H5) from the Baltic Sea, at Kiel, Germany. 16S-rRNA analysis showed that bacterial strain H5 belongs to the genus Vibrio, family Vibrionaceae and class Gamma-Proteobacteria. Bacterial strain H5 can degrade steroids such as testosterone and estrogens, which was shown in this study by determining the (3)H labeled steroid retaining in the bacterial H5 culture medium at incubation times of 5 h and 20 h. Since 3α-hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) is a key enzyme in adaptive steroid degradation in Comamonas testosteroni (C. testosteroni), in previous investigations, a meta-genomic system with the 3α-HSD/CR gene as a positive control was established. By this meta-genomic system, two estradiol inducible genes coding 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase, respectively, which are involved in steroid degradation, were found in marine strain H5. In the present work, the 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase genes were subcloned into plasmids pET38-12 and pET24-17, respectively. Overexpression in Escherichia coli (E. coli) strain BL21(DE3)pLysS cells resulted in corresponding proteins with an N-terminal His-tag sequence. After induction with isopropyl-β-D-thiogalactoside, 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase were purified in one step using nickel-chelate chromatography. After protein determination, 3-ketosteroid-delta-1-dehydrogenase (0.48 mg/ml) and carboxylesterase (1.28 mg/ml) were used to prepare antibodies to determine steroid binding specificity in future research. In summary, we have shown that the marine strain H5 could metabolize steroids; have isolated two estradiol inducible genes from strain H5 chromosomal DNA, and purified the corresponding proteins for further research. The exact characterization and systematic classification of the marine steroid degrading bacterial strain H5 is envisaged. The strain might be used for the bioremediation of steroid contaminations in seawater.  相似文献   

15.
The stereospecificity of hydrogen transfer between steroid (17-hydroxyprogesterone) and both natural cofactors by bovine testicular 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) has been determined. Cofactors used in these studies, [4-pro-S-3H]NADH ([4B-3H]NADH) and [4-pro-S-3H]NADPH ([4B-3H]NADPH) were generated with human placental estradiol 17 beta-dehydrogenase (EC 1.1.1.62) utilizing [17 alpha-3H]estradiol-17 beta and NAD+ or NADP+, respectively. The resulting [4B-3H]NADH and [4B-3H]NADPH were purified by ion-exchange chromatography and separately incubated with molar excess of 17-hydroxyprogesterone as substrate in the presence of 20 alpha-HSD. Following incubation, steroid reactant and product were extracted, separated by HPLC and quantitated as to mass and content of tritium. The oxidized and reduced cofactors were separated by ion-exchange chromatography and quantitated as to mass and tritium content. In all incubations, equimolar amounts of 17,20 alpha-dihydroxy-4-pregnen-3-one and oxidized cofactor were obtained. Further, all recovered radioactivity remained with cofactor and none was found in the steroid product. In additional experiments, both reduced cofactors were separately incubated with glutamate dehydrogenase, an enzyme known to transfer from the B-side of the nicotinamide ring. Here radioactivity was present only in the unreacted cofactor fractions and in the product, glutamic acid. The results indicate that bovine testicular 20 alpha-HSD catalyzes transfer of the 4A-hydrogen from the dihydronicotinamide moiety of the reduced cofactor. Finally, this work described modifications that represent considerable improvement in the purification and assay of bovine 20 alpha-HSD as originally described.  相似文献   

16.
3 alpha-HSD appears to be a multifunctional enzyme. In addition to its traditional role of catalyzing early steps in androgen metabolism, it will also oxidoreduce prostaglandins and detoxify trans-dihydrodiols (proximate carcinogens). Since these novel reactions have been quantified using homogeneous enzyme it is necessary to interpret the role of the enzyme in these processes in vivo with some caution. However, it is rare that such observations on a purified hydroxysteroid dehydrogenase have led to such important questions. Is the 3 alpha-HSD the only steroid dehydrogenase that transforms prostaglandins and trans-dihydrodiols? Are hydroxysteroid dehydrogenases and prostaglandin dehydrogenases the same enzymes in certain tissues? Does 3 alpha-HSD protect against chemical carcinogenesis in vivo? The inhibition of the purified dehydrogenase by therapeutically relevant concentrations of anti-inflammatory drugs also deserves comment. Is this hydroxysteroid dehydrogenase really an in vivo target for anti-inflammatory drug action? Could these drugs exert some of their pharmacological effect either by preventing glucocorticoid metabolism in some tissues or by preventing the transformation of PGF2 alpha (non-inflammatory prostanoid) to PGE2 (a pro-inflammatory prostanoid)? Could these drugs, by inhibiting trans-dihydrodiol oxidation, potentiate the initiation of chemical carcinogenesis? These and other important questions can be answered only by developing specific inhibitors for the dehydrogenase to decipher its function in vivo.  相似文献   

17.
The first crystallographic structure of human type 3 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD3, AKR1C2), an enzyme playing a critical role in steroid hormone metabolism, has been determined in complex with testosterone and NADP at 1.25-A resolution. The enzyme's 17beta-HSD activity was studied in comparison with its 3alpha-HSD activity. The enzyme catalyzes the inactivation of dihydrotestosterone into 5alpha-androstane-3alpha,17beta-diol (3alpha-diol) as well as the transformation of androstenedione into testosterone. Using our homogeneous and highly active enzyme preparation, we have obtained 150-fold higher 3alpha-HSD specificity as compared with the former reports in the literature. Although the rat and the human 3alpha-HSDs share 81% sequence homology, our structure reveals significantly different geometries of the active sites. Substitution of the Ser(222) by a histidine in the human enzyme may compel the steroid to adopt a different binding to that previously described for the rat (Bennett, M. J., Albert, R. H., Jez, J. M., Ma, H., Penning, T. M., and Lewis, M. (1997) Structure 5, 799-T812). Furthermore, we showed that the affinity for the cofactor is higher in the human 3alpha-HSD3 than the rat enzyme due to the presence of additional hydrogen bonds on the adenine moiety and that the cofactor is present under its reduced form in the active site in our preparation.  相似文献   

18.
Preparations of 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) from Clostridium perfringens were successfully lyophilized into a stable powder form. Purification of the enzyme was achieved using triazine dye affinity chromatography. C. perfringens 3 alpha-hydroxysteroid dehydrogenase was purified 24-fold using Reactive Red 120 (Procion Red) -cross-linked agarose (70% yield). Quantitative measurement of bile acids with the purified enzymes, 3 alpha-hydroxysteroid dehydrogenase and 7 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.159) from Clostridium bifermentans (strain F-6), was achieved spectrophotometrically. Standard curves with chenodeoxycholic acid (CDC) and cholic acid were linear within a concentration range of 20-100 microM. Analysis of mixtures of ursodeoxycholic acid and CDC showed the additive nature of the 3 alpha-hydroxysteroid dehydrogenase and showed also that 7 alpha-hydroxyl groups were independently quantified by the 7 alpha-hydroxysteroid dehydrogenase. Bile acids in Folch extracts of human bile samples were measured using purified preparations of Pseudomonas testosteroni 3 alpha-hydroxysteroid dehydrogenase, C. perfringens 3 alpha-hydroxysteroid dehydrogenase, Escherichia coli 7 alpha-hydroxysteroid dehydrogenase and C. bifermentans (strain F-6) 7 alpha-hydroxysteroid dehydrogenase. Statistical comparison validated the use of C. perfringens 3 alpha- and C. bifermentans 7 alpha-hydroxysteroid dehydrogenases for the quantification of bile acids in bile.  相似文献   

19.
3 alpha-Hydroxysteroid dehydrogenase (3 alpha-HSD) activity has been purified to homogeneity, the enzyme is a monomer with a Mw of 32,000 Da. 3 beta-Hydroxysteroid dehydrogenase (3 beta-HSD) activity has been partially purified and has an apparent Mw of 30,000 Da. Both enzymes have the same cofactor requirements, optimal pH. However, 3 beta-HSD appeared to be an integral protein dependent on protein environment for its activity while 3 alpha-HSD activity is a protein more loosely associated to membranes.  相似文献   

20.
Three enzyme forms (CR1, CR2 and CR3) of carbonyl reductase were purified from chicken liver with using 4-benzoylpyridine as a substrate. CR1 was a dimeric enzyme composed of two identical 25-kD subunits. CR2 and CR3 were monomeric enzymes whose molecular weights were both 32 kD. CR1 exhibited 17 beta-hydroxysteroid dehydrogenase activity as well as carbonyl reductase activity in the presence of both NADP(H) and NAD(H). CR2 and CR3 had similar properties with regard to substrate specificity and inhibitor sensitivity. They could exhibit the activity only with NADPH and had no hydroxysteroid dehydrogenase activity. CR2 and CR3 cross-reacted with anti-chicken kidney carbonyl reductase antibody, though CR1 did not. The results suggest that CR1 is a hydroxysteroid dehydrogenase, and CR2 and CR3 are similar to each other and to the kidney enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号