首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of a highly reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase with N-ethylmaleimide results in the loss of activation of the enzyme by monovalent cations. Low concentrations of fructose 2,6-bisphosphate or high (inhibitory) levels of fructose 1,6-bisphosphate protect the enzyme against the loss of monovalent cation activation, while non-inhibitory concentrations of the substrate gave partial protection. The allosteric inhibitor AMP markedly increases the reactivity of the cysteine residue. The results indicate that fructose 2,6-bisphosphate can protect the enzyme against the loss of potassium activation by binding to an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit the enzyme by binding to this allosteric site.  相似文献   

2.
Limited treatment of native pig kidney fructose-1,6-bisphosphatase (50 microM enzyme subunit) with [14C]N-ethylmaleimide (100 microM) at 30 degrees C, pH 7.5, in the presence of AMP (200 microM) results in the modification of 1 reactive cysteine residue/enzyme subunit. The N-ethylmaleimide-modified fructose-1,6-bisphosphatase has a functional catalytic site but is no longer inhibited by fructose 2,6-bisphosphate. The enzyme derivative also exhibits decreased affinity toward Mg2+. The presence of fructose 2,6-bisphosphate during the modification protects the enzyme against the loss of fructose 2,6-bisphosphate inhibition. Moreover, the modified enzyme is inhibited by monovalent cations, as previously reported (Reyes, A., Hubert, E., and Slebe, J.C. (1985) Biochem. Biophys. Res. Commun. 127, 373-379), and does not show inhibition by high substrate concentrations. A comparison of the kinetic properties of native and N-ethylmaleimide-modified fructose-1,6-bisphosphatase reveals differences in some properties but none is so striking as the complete loss of fructose 2,6-bisphosphate sensitivity. The results demonstrate that fructose 2,6-bisphosphate interacts with a specific allosteric site on fructose-1,6-bisphosphatase, and they also indicate that high levels of fructose 1,6-bisphosphate inhibit the enzyme by binding to this fructose 2,6-bisphosphate allosteric site.  相似文献   

3.
The specific chemical modification by sodium cyanate of highly reactive cysteine residues at pH 7.5 in pig kidney fructose 1,6-bisphosphatase results in the reversible loss of activation of the enzyme by monovalent cations. No loss of activation by potassium ions occurs when modification is carried out in the presence of fructose 2,6-bisphosphate. The effect of Mg2+ on native and cyanate-modified enzyme activities implicates the above cysteine residue as being directly linked to the inhibition by both the divalent cation and fructose 2,6-bisphosphate. Incorporation of [14C]cyanate to the enzyme shows that the blockage of two reactive residues per tetramer is sufficient to eliminate the activation of the enzyme by K+.  相似文献   

4.
F Marcus 《Biochemistry》1975,14(17):3916-3921
Modification of pig kidney fructose 1,6-bisphosphatase with 2,3-butanedione (in the presence of AMP) results in the loss of activation of the enzyme by monovalent cations. Under these conditions about 8 arginyl residues per mole of enzyme were modified. No other residues were modified. No loss of monovalent cation activation occurs when modification with 2,3-butanedione is carried out in the presence of AMP plus the substrate fructose 1,6-bisphosphate and 3.2 less arginyl residues were modified. Since fructose 1,6-bisphosphatase contains 4 subunits, it is suggested that one arginyl residue per subunit plays an essential role in monovalent cation activation of the enzyme. Studies on sulfhydryl group reactivity toward 5,5'-dithiobis(2-nitrobenzoic acid) explain the protection exerted by fructose 1,6-bisphosphate against the loss of monovalent cation activation in terms of an enzyme conformational change induced by substrate, which makes unreactive the essential arginyl residue. The results of the present paper, as well as previous evidence, are discussed in terms of the mechanism of monovalent cation activation of fructose 1,6-biphosphatase.  相似文献   

5.
Selective treatment of pig kidney fructose 1,6-bisphosphatase with cyanate leads to the formation of an active carbamoylated derivative that shows no cooperative interaction between the AMP-binding sites, but completely retains the sensitivity to the inhibitor. By an exhaustive carbamoylation of the enzyme a derivative is formed that has a complete loss of cooperativity and a decrease of sensitivity to AMP. It was proposed that the observed changes of allosteric properties were due to the chemical modification of two lysine residues per enzyme subunit [Slebe et al. (1983), J. Protein Chem. 2, 437–443]. Studies of the temperature dependence of AMP sensitivity and the interaction with Cibacron Blue Sepharose of carbamoylated fructose 1,6-bisphosphatase derivatives indicate that the lysine residue involved in AMP sensitivity is located at the allosteric AMP site, while the lysine residue involved in AMP cooperativity is at a distinct location. Using [14C]cyanate, we identified both lysine residues in the primary structure of the enzyme; Lys50 is essential for AMP cooperativity and Lys112 appears to be the reactive residue involved in the AMP sensitivity. According to the fructose 1,6-bisphosphatase crystal structure, Lys50 is strategically positioned at the C1–C2 interface, near the molecular center of the tetramer, and Lys112 is in the AMP-binding site. The results reported here, combined with the structural data of the enzyme, strongly suggest that the C1ndash;C2 interface is critical for the propagation of the allosteric signal among the AMP sites on different subunits.  相似文献   

6.
Selective treatment of pig kidney fructose 1,6-bisphosphatase with potassium cyanate leads to the formation of an active carbamylated enzyme that has lost the cooperative interactions among AMP sites, but retains sensitivity to inhibition of catalytic activity by the regulator AMP. Incorporation data on [14C]KNCO indicate that the loss of enzyme cooperativity at the AMP sites is related to selective carbamylation of four lysine residues per mole of tetrameric enzyme. Exhaustive carbamylation suggests that a second lysine residue per subunit is essential for AMP inhibition.  相似文献   

7.
F Marcus 《Biochemistry》1976,15(16):3505-3509
Modification of pig kidney fructose-1,6-bisphosphatase with 2,3-butanedione in borate buffer (pH 7.8) leads to the loss of the activation of the enzyme by monovalent cations, as well as to the loss of allosteric adenosine 5'-monophosphate (AMP) inhibition. In agreement with the results obtained for the butanedione modification of arginyl residues in other enzymes, the effects of modification can be reversed upon removal of excess butanedione and borate. Significant protection to the loss of K+ activation was afforded by the presence of the substrate fructose 1,6-bisphosphate, whereas AMP preferentially protected against the loss of AMP inhibition. The combination of both fructose 1,6-bisphosphate and AMP fully protected against the changes in enzyme properties on butanedione treatment. Under the latter conditions, one arginyl residue per mole of enzyme subunit was modified, whereas three arginyl residues were modified by butanedione under conditions leading to the loss of both potassium activation and AMP inhibition. Thus, the modification of two arginyl residues per subunit would appear to be responsible for the change in enzyme properties. The present results, as well as those of a previous report on the subject (Marcus, F. (1975), Biochemistry 14, 3916-3921) support the conclusion that one arginyl residue per subunit is essential for monovalent cation activation, and another arginyl residue is essential for AMP inhibition. A likely role of the latter residue could be its involvement in the binding of the phosphate group of AMP.  相似文献   

8.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

9.
Chemical modification of rabbit liver fructose 1,6-bisphosphatase by 5,5′-dithiobis-(2-nitrobenzoic acid) results in thiolation of four highly reactive sulfhydryl groups and a diminished sensitivity to AMP inhibition but not loss of enzyme activity. Ethoxyformylation of the histidine groups of fructose 1,6-bisphosphatase does not result in a sharp loss of activity until at least 4 or 5 of the 13 residues have reacted. Exhaustive formylation does abolish the enzyme's activity. These four most reactive sulfhydryl groups and the one or two least easily modified histidine moieties (those responsible for activity) can be protected against modification by fructose-1,6-P2 and to a lesser extent by fructose-6-P. The binding of fructose-1,6-P2 to fructose 1,6-bisphosphatase, however, depends on the presence of structural metal ion since EDTA which removes all endogenous Zn2+ from the protein prevents binding of fructose-1, 6-P2 to the enzyme.  相似文献   

10.
Rat liver fructose 1,6-bisphosphatase appears to be unique in that it extends 24-26 residues beyond the COOH-terminal amino acid of other mammalian fructose 1,6-bisphosphatases and this extension contains phosphorylation sites. Using as a frame of reference the 335-residue sequence of pig kidney fructose 1,6-bisphosphatase (Marcus, F., Edelstein, I., Reardon, I., and Heinrikson, R. L. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 7161-7165), the rat liver enzyme would extend to residue 361. Limited proteolysis in the COOH-terminal region of the molecule with chymotrypsin, trypsin, or both sequentially, led us to establish that the phosphorylation sites are located at Ser residues 341 and 356. The in vitro phosphorylation of purified rat liver fructose 1,6-bisphosphatase by the catalytic subunit of cyclic AMP-dependent protein kinase results in modification at both residues, although the major site of phosphorylation (61%) is at Ser-341. In contrast, rat liver fructose 1,6-bisphosphatase purified from animals that had been injected with [32P] phosphate contains most of the label (81%) at Ser-356.  相似文献   

11.
The active and allosteric sites of fructose 1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) were labeled by reaction with pyridoxal phosphate and sodium borohydride in the presence of the allosteric inhibitor AMP or the substrate, Fru-P2, respectively. Modification of the active site results in loss of activity. Modification of the allosteric site decreases the sensitivity of the enzyme to inhibition by AMP and alters its ability to bind to blue dextran-Sepharose. The allosteric and active sites have been located on different cyanogen bromide peptides; the sequence of a nonapeptide from the active site is (H)GlyLysLeuArgLeuLeu TyrGluCys(OH). The lysyl residue is modified by pyridoxal phosphate.  相似文献   

12.
The relationship between derivatization of reactive cysteine residues with N-ethylmaleimide and a partial desensitization of fructose 1,6-bisphosphatase to AMP inhibition was studied. AMP desensitization of the enzyme was found to be dependent on the activity assay conditions used. When the assay was performed in the presence of high levels of monovalent cations (150 mM), the AMP affinity of the enzyme decreased with the chemical modification. The apparent loss of sensitivity toward AMP was accompanied by an uptake of 1 mole of N-ethylmaleimide/mole of enzyme subunit. However, the modified enzyme did not show alteration in AMP inhibition in the absence of K+. Evidence was obtained that K+ induces a conformational change on the enzyme derivative, which hinders AMP interaction with the protein. The results point to the importance of selecting suitable conditions for the study of the regulatory properties in allosteric enzymes.  相似文献   

13.
Chloroplast fructose-1,6-bisphosphatase is an essential enzyme in the photosynthetic pathway of carbon dioxide fixation into sugars and the properties of this enzyme are clearly distinct from cytosolic gluconeogenic fructose-1,6-bisphosphatase. Light-dependent activation via a ferredoxin/thioredoxin system and insensitivity to inhibition by AMP are unique characteristics of the chloroplast enzyme. In the present study, purified spinach chloroplast fructose-1,6-bisphosphatase was reduced, S-carboxymethylated with iodoacetic acid, and cleaved with either cyanogen bromide or trypsin. The resulting peptides were purified by reversed-phase high performance liquid chromatography. Automated Edman degradation of some of the purified peptides showed amino acid sequences highly homologous to residues 72-86, 180-199, and 277-319 of pig kidney fructose-1,6-bisphosphatase. These findings suggest a common evolutionary origin for mammalian gluconeogenic and chloroplast fructose-1,6-bisphosphatase, enzymes catalyzing the same reaction but having different functions and modes of regulation.  相似文献   

14.
Chicken liver fructose 1,6-bisphosphatase binds to blue dextran-Sepharose affinity columns and is eluted by AMP, an allosteric inhibitor of the enzyme. On the other hand, bumblebee fructose 1,6-bisphosphatase, which is not inhibited by AMP, does not bind to blue dextran-Sepharose. Chicken liver 1,6-bisphosphatase binds 3.6 mol of AMP/mol of enzyme, while the bumblebee enzyme binds no AMP. However, bumblebee fructose 1,6-bisphosphatase can be activated by subtilisin, indicating that it possesses a protease-sensitive region similar to that present in mammalian fructose 1,6-bisphosphatase.  相似文献   

15.
J E Scheffler  H J Fromm 《Biochemistry》1986,25(21):6659-6665
The fluorescent nucleotide analogue formycin 5'-monophosphate (FMP) inhibits rabbit liver fructose-1,6-bisphosphatase (I50 = 17 microM, Hill coefficient = 1.2), as does the natural regulator AMP (I50 = 13 microM, Hill coefficient = 2.3), but exhibits little or no cooperativity of inhibition. Binding of FMP to fructose-1,6-bisphosphatase can be monitored by the increased fluorescence emission intensity (a 2.7-fold enhancement) or the increased fluorescence polarization of the probe. A single dissociation constant for FMP binding of 6.6 microM (4 sites per tetramer) was determined by monitoring fluorescence intensity. AMP displaces FMP from the enzyme as evidenced by a decrease in FMP fluorescence and polarization. The substrates, fructose 6-phosphate and fructose 1,6-bisphosphate, and inhibitors, methyl alpha-D-fructofuranoside 1,6-bisphosphate and fructose 2,6-bisphosphate, all increase the maximal fluorescence of enzyme-bound FMP but have little or no effect on FMP binding. Weak metal binding sites on rabbit liver fructose-1,6-bisphosphatase have been detected by the effect of Zn2+, Mn2+, and Mg2+ in displacing FMP from the enzyme. This is observed as a decrease in FMP fluorescence intensity and polarization in the presence of enzyme as a function of divalent cation concentration. The order of binding by divalent cations is Zn2+ = Mn2+ greater than Mg2+, and the Kd for Mn2+ displacement of FMP is 91 microM. Methyl alpha-D-fructofuranoside 1,6-bisphosphate, as well as fructose 6-phosphate and inorganic phosphate, enhances metal-mediated FMP displacement from rabbit liver fructose-1,6-bisphosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

17.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

18.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

19.
Treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide was shown to abolish the inhibition by fructose 2,6-bisphosphate, which also protected the enzyme against this chemical modification [Reyes, A., Burgos, M. E., Hubert, E., and Slebe, J. C. (1987),J. Biol. Chem. 262, 8451–8454]. On the basis of these results, it was suggested that a single reactive sulfhydryl group was essential for the inhibition. We have isolated a peptide bearing the N-ethylmaleimide target site and the modified residue has been identified as cysteine-128. We have further examined the reactivity of this group and demonstrated that when reagents with bulky groups are used to modify the protein at the reactive sulfhydryl [e.g., N-ethylmaleimide or 5,5-dithiobis-(2-nitrobenzoate)], most of the fructose 2,6-bisphosphate inhibition potential is lost. However, there is only partial or no loss of inhibition when smaller groups (e.g., cyanate or cyanide) are introduced. Kinetic and ultraviolet difference spectroscopy-binding studies show that the treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide causes a considerable reduction in the affinity of the enzyme for fructose 2,6-bisphosphate while affinity for fructose 1,6-bisphosphate does not change. We can conclude that modification of this reactive sulfhydryl affects the enzyme sensitivity to fructose 2,6-bisphosphate inhibition by sterically interfering with the binding of this sugar bisphosphate, although this residue does not seem to be essential for the inhibition to occur. The results also suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate may interact with the enzyme in a different way.  相似文献   

20.
Cytoplasmic fructose-1,6-bisphosphatase has been purified from spinach leaves to apparent homogeneity. The enzyme is a tetramer of molecular weight about 130,000. At pH 7.5, the Km for fructose 1.6-bisphosphate was 2.5 micron, and for MgCl2 0.13 mM; the enzyme was specific for fructose 1,6-bisphosphate. Saturation with Mg2+ was achieved with lower concentrations at pH 8 than at pH 7. AMP and high concentrations of fructose 1,6-bisphosphate inhibited enzyme activity. Ammonium sulfate relieved the latter inhibition but was itself inhibitory when substrate concentrations were low. Acetylation studies demonstrated that the AMP regulatory site was distinct from the catalytic site. Cytoplasmic fructose-1,6-bisphosphatase may contribute to the regulation of sucrose biosynthesis in plant leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号