首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a sensitive and simple procedure for determination of galactosylsphingosine (psychosine), using HPLC. The method involved extraction of lipids, separation by cation-exchange and C18 reverse-phase columns, and derivatization with o-phthalaldehyde. The fluorescent galactosylsphingosine was detected by HPLC. The amount of galactosylsphingosine was accurately assayed by simultaneous determination of glucosylsphingosine, as the internal standard. The detection limit was 0.5 ng/assay tube, and the quantitative range of the method was up to 750 ng. This procedure was applied to tissue from the twitcher mouse, an animal model of human globoid cell leukodystrophy, as well as tissue from normal and carrier mice. In the latter mice, a small amount of galactosylsphingosine was detected in the spinal cord (21.6-37.2 ng/100 mg wet weight) but not in the cerebrum and sciatic nerve. Marked accumulation of galactosylsphingosine was noted in the nervous tissues of the twitcher strain, even on postnatal day 4. The concentration of galactosylsphingosine was greater in the peripheral than in central nervous tissues. The spinal cord and brainstem contained more galactosylsphingosine than did the cerebrum and cerebellum. The concentration increased with age from 764 ng/100 mg in the sciatic nerve at 4 days to 5,910 ng/100 mg at 37 days. These data correlate well with the pathological changes; tissues containing higher concentrations of galactosylsphingosine show earlier and more severe pathological changes than those containing lower concentrations, thereby indicating the close link of galactosylsphingosine to the pathogenesis of the twitcher mouse.  相似文献   

2.
Galactosylsphingosine (psychosine) in somatic organs from a patient with globoid cell leukodystrophy and from the twitcher mouse, an animal model of human globoid cell leukodystrophy was assayed. There was an abnormal accumulation of galactosylsphingosine as in nervous tissues, albeit the concentrations being lower than those in nervous tissues. Galactosylsphingosine accumulation in the kidney of the twitcher mouse increased with age. These findings indicate that globoid cell leukodystrophy is a generalized galactosylsphingosine storage disease.  相似文献   

3.
Globoid cell leukodystrophy (Krabbe disease) is an autosomal recessive inherited neurodegenerative disorder caused by the deficiency of the lysosomal enzyme beta-galactosylceramidase. The pathogenesis of the disorder has been proposed to arise from the accumulation of the cytotoxic metabolite galactosylsphingosine (psychosine). The twitcher mouse is a naturally occurring murine model of globoid cell leukodystrophy. We have developed a rapid, sensitive, and specific mass spectrometric method for determining the galactosylsphingosine concentration in the tissues of twitcher mice. Galactosylsphingosine is extracted from the tissues in methanol, isolated using strong cation-exchange and C18 solid-phase extraction chromatography, and then directly analyzed using electrospray ionization-tandem mass spectrometry. A lactosylsphingosine internal standard has been employed for quantification. The assay demonstrated significant accumulation of galactosylsphingosine in the brain, spinal cord, and kidney of twitcher mice. It is anticipated that this method may be of use in the monitoring of experimental therapies for globoid cell leukodystrophy.  相似文献   

4.
Abstract: UDP-galactose:ceramide galactosyltransferase activity was assayed in the spinal cord and kidney of the recently discovered neurological mutant, the twitcher mouse, which is an enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease). The activity in the spinal cord was essentially normal during the early myelination period up to 15 days. There was a slight reduction at 20 days. At 25 and 33 days, the galactosyltransferase activity was drastically reduced compared to controls. In contrast, the galactosyltransferase activity in the kidney of twitcher mice remained normal throughout the developmental stages examined. Activity of the control enzyme UDP-glucose:ceramide glucosyltransferase was always normal in both the spinal cord and kidney. Thus, reduction of galactosylceramide synthesis occurs in the CNS secondarily to the pathological alteration of the oligodendroglia. No such reduction occurs in the kidney, at least for the last step of galactosylceramide synthesis. Reduced synthesis as the result of metabolic regulation in the presence of the catabolic block is therefore unlikely to be the cause of the lack of abnormal accumulation of galactosylceramide in the kidney of patients with globoid cell leukodystrophy.  相似文献   

5.
We developed a sensitive and simple method to determine galactosylsphingosine and glucosylsphingosine as a 4-fluoro-7-nitrobenzofurazan autofluorescent compound, using HPLC equipped with a Showdex sugar column. Amounts of galactosylsphingosine were successfully measured in the picomole range. This novel procedure is more stable and simpler than the previous method using o-phthalaldehyde. It was applied to tissues from the twitcher mouse, an animal model of human globoid cell leukodystrophy. The amount of galactosylsphingosine was 34-102 micrograms/kg of wet tissues in control cerebrum and cerebellum, whereas in twitcher mice the range was 2,251-4,228 micrograms/kg of wet tissues. The psychosine concentration was also increased in the liver and kidney of twitcher mice, respectively, 1,513 micrograms and 1,106 micrograms/kg of wet tissue (normal liver, 125 micrograms; normal kidney, 74 micrograms/kg of wet tissue). This novel procedure is useful for the pathochemical evaluation of lysosphingolipids in various sphingolipidoses as well as in other neuropathological and cellular conditions.  相似文献   

6.
Krabbe disease is a neuroinflammatory disorder in which galactosylsphingosine (psychosine) accumulates in nervous tissue. To gain insight into whether the psychosine-induced effects in nervous tissue extend to peripheral organs, we investigated the expression of cytokines and their effects on peroxisomal structure/functions in twitcher mouse liver (animal model of Krabbe disease). Immunofluorescence analysis demonstrated TNF-α and IL-6 expression, which was confirmed by mRNAs quantitation. Despite the presence of TNF-α, lipidomic analysis did not indicate a significant decrease in sphingomyelin or an increase in ceramide fractions. Ultrastructural analysis of catalase-dependent staining of liver sections showed reduced reactivity without significant changes in peroxisomal contents. This observation was confirmed by assaying catalase activity and quantitation of its mRNA, both of which were found significantly decreased in twitcher mouse liver. Western blot analysis demonstrated a generalized reduction of peroxisomal matrix and membrane proteins. These observations indicate that twitcher mouse pathobiology extends to the liver, where psychosine-induced TNF-α and IL-6 compromise peroxisomal structure and functions.  相似文献   

7.
Abnormal accumulation of lysosulfatide (sulfogalactosylsphingosine) was evident in autopsied tissues from a boy with late-infantile metachromatic leukodystrophy. The concentration was high in the cerebral white matter, spinal cord and sciatic nerve (116-787 pmol/mg protein) and low in the cerebral gray matter, kidney and liver (4-40 pmol/mg protein). As is the case with galactosylsphingosine, lysosulfatide inhibited cytochrome c oxidase activity, in a dose-dependent manner. Judging from the tissue distribution of the accumulated lysosulfatide and because of the cytotoxicity, the lysosulfatide presumably explains the demyelination seen in the nervous tissues of patients with metachromatic leukodystrophy.  相似文献   

8.
UDP-galactose:glycoprotein galactosyltransferase activity has been measured in several tissues of the rat, ranging in age from 16 days embryo to 35 days postnatal. The enzyme activity was found to be high in fetal liver, lungs, and brain tissues but the concentration decreased with gestational age with no further changes after birth. The enzyme activity in the serum of newborns was higher than in pregnant and nonpregnant adult rats. There was no qualitative difference (optimum pH, cation requirements, affinity for the substrate UDP-galactose, or requirement for Triton X-100) between the enzyme from embryonic liver and that from adult rats. During the embryonic stage nearly half of the enzyme activity was localized in a plasma membrane-rich fraction and only a minor part in the microsomal fraction, while in the adult most of the activity was present in the microsomal fraction. Under certain conditions of assay the incorporation of galactose into glycoprotein in liver homogenates was greatly stimulated by CDP-choline or ATP. However, CDP-choline showed a considerably greater effect than ATP at 5 days after birth but this effect could be eliminated by solubilizing the homogenates in deoxycholate.  相似文献   

9.
We examined chronological changes of myelin proteins of the brainstem and spinal cord of the twitcher mouse (15, 20, and 30 days old), a murine model of human globoid cell leukodystrophy caused by a genetic deficiency of galactosylceramidase I activity. The yield of myelin was normal until postnatal day 20, whereas galactosylsphingosine (psychosine) accumulated with age in myelin. The protein profiles of myelin and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the myelin remained normal throughout the experimental period. Fatty acylation of proteolipid protein (PLP) was examined in a cell-free system by incubation of myelin with [3H]palmitic acid, CoA, and ATP, and was normal at postnatal day 15, but decreased after postnatal day 20. Decreased fatty acylation of PLP was also observed in the twitcher mouse at postnatal day 20 when the isolated myelin was incubated with [14C]palmitoyl-CoA in the absence of ATP and CoA, or the slices of brainstem and spinal cord were incubated with [3H]palmitic acid. The activity of fatty acid:CoA ligase was reduced in myelin. These data suggest that decreased acylation of PLP in twitcher mouse myelin is probably due to reduced activities for both activation and transfer of fatty acid into PLP and that metabolic disturbance is present in myelin because acylation of PLP has been shown to occur in myelin membrane. Although psychosine (200 microM) inhibited only 17% of the acylation in vitro, it may be responsible for the reduced acylation of PLP in vivo.  相似文献   

10.
Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast–osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration.  相似文献   

11.
The sphingolipids galactosylceramide and sulfatide are important for the formation and maintenance of myelin. Transgenic mice overexpressing the galactosylceramide synthesizing enzyme UDP-galactose:ceramide galactosyltransferase in oligodendrocytes display an up to four-fold increase in UDP-galactose:ceramide galactosyltransferase activity, which correlates with an increase in its products monogalactosyl diglyceride and non-hydroxy fatty acid-containing galactosylceramide. Surprisingly, however, we observed a concomitant decrease in alpha-hydroxylated galactosylceramide such that total galactosylceramide in transgenic mice was almost unaltered. These data suggest that UDP-galactose:ceramide galactosyltransferase activity does not limit total galactosylceramide level. Furthermore, the predominance of alpha-hydroxylated galactosylceramide appeared to be determined by the extent to which non-hydroxylated ceramide was galactosylated rather than by the higher affinity of UDP-galactose:ceramide galactosyltransferase for alpha-hydroxy fatty acid ceramide. The protein composition of myelin was unchanged with the exception of significant up-regulation of the myelin and lymphocyte protein. Transgenic mice were able to form myelin, which, however, was apparently unstable and uncompacted. These mice developed a progressive hindlimb paralysis and demyelination in the CNS, demonstrating that tight control of UDP-galactose:ceramide galactosyltransferase expression is essential for myelin maintenance.  相似文献   

12.
The metabolism of galactosylceramide was investigated in normal and twitcher mice, an animal model for human globoid cell leukodystrophy. The findings were compared with data obtained on human tissues. In vitro studies demonstrated that there were two genetically distinct enzymes that hydrolyze galactosylceramide: galactosylceramidase I and II. The former was deficient in the twitcher, while the latter was intact. beta-Galactosidase preparations purified from normal mouse liver possessed the activity to hydrolyze galactosylceramide when the assay conditions for galactosylceramidase II was used. Therefore, galactosylceramidase II was considered to be identical to GM1 ganglioside beta-galactosidase. In contrast to the human enzyme, the murine beta-galactosidase had a relatively high Km value toward galactosylceramide. The galactosylceramide-loading test demonstrated that the twitcher fibroblasts hydrolyzed the lipid at lower rates than seen in cases of human globoid cell leukodystrophy fibroblasts. These differences in galactosylceramidase II between murine and human tissues suggest that galactosylceramide accumulates in twitcher mice but not in humans with globoid cell leukodystrophy, even though galactosylceramidase I is genetically deficient in both human and this mouse model.  相似文献   

13.
The twitcher mutant mouse, the animal model of Krabbe disease (human globoid cell leukodystrophy), is characterized by apparent deficiency of galactosylceramide beta-galactosidase activity. Saposin A and C, the heat-stable small sphingolipid activator glycoproteins, stimulate the activity of galactosylceramide beta-galactosidase as well as glucosylceramide beta-glucoside. The role of these saposins in the twitcher mutation was investigated. Boiled supernatant fractions, which contained saposins, were prepared from homogenates of twitcher brain, liver, kidney, and spleen. These preparations showed an almost identical effect on the activity of purified glucosylceramide beta-glucosidase (measured by hydrolysis of 4-methylumbelliferyl-beta-glucoside) with similar preparations from control tissues. The effect on the activity of galactosylceramide beta-galactosidase as well as 4-methylumbelliferyl-beta-glucoside beta-glucosidase in the twitcher brain and liver homogenates by authentic saposin A and C was similar to that in control tissues. These results suggest that the twitcher mutation does not affect the concentrations of saposin A or C or their interaction with galactosylceramide beta-galactosidase.  相似文献   

14.
Ornithine aminotransferase (l-ornithine 2-oxoacid aminotransferase, OAT) is widely expressed in organs, but studies in mice have focused primarily on the intestine, kidney and liver because of the high OAT-specific activity in these tissues. This study aimed to investigate OAT activity in adult mouse tissues to assess the potential contribution to ornithine metabolism and to determine OAT control during postnatal development. OAT activity was widely distributed in mouse tissues. Sexual dimorphism was observed for most tissues in adults, with greater activity in females than in males. The contribution of skeletal muscles to total OAT activity (34 % in males and 27 % in females) was the greatest (50 %) of the investigated tissues in pre-weaned mice and was similar to that of the liver in adults. OAT activity was found to be regulated in a tissue-specific manner during postnatal development in parallel with large changes in the plasma testosterone and corticosterone levels. After weaning, OAT activity markedly increased in the liver but dropped in the skeletal muscle and adipose tissue. Anticipating weaning for 3 days led to an earlier reduction of OAT activity in skeletal muscles. Orchidectomy in adults decreased OAT activity in the liver but increased it in skeletal muscle and adipose tissue. We concluded that the contribution of skeletal muscle to mouse ornithine metabolism may have been underestimated. The regulation of OAT in skeletal muscles differs from that in the liver. The present findings suggest important and tissue-specific metabolic roles for OAT during postnatal development in mice.  相似文献   

15.
Globoid cell leukodystrophy (Krabbe disease) is caused by mutations in galactosylceramidase, a lysosomal enzyme that acts to digest galactosylceramide, a glycolipid concentrated in myelin, and psychosine (galactosylsphingosine). Globoid cell leukodystrophy has been identified in many species including humans and twitcher mice. Several studies on human tissue have examined the lipid profile in this disease by gas, liquid or thin layer chromatography. Electrospray ionization tandem mass spectrometry combined with reverse phase HPLC has become a powerful alternative strategy, used here to compare the sphingolipid profile of pons/medulla tissue from twitcher mice with control tissue. In this lipidomics LC-MS approach, we scanned for precursors of m/z 264 to obtain a semi-quantitative profile of ceramides and galactosylceramides. Sphingosine-1-phosphate, C18:0 ceramide, C22:0 ceramide and C24:0 ceramide levels were reduced in the pons/medulla of twitcher mice compared to levels in control mice at 31 and 35-37 days of age. The levels of C22:0 and C24:0 galactosylceramide were similar between twitcher and control specimens and there was a trend toward reduced levels of C24:1 galactosylceramide and C24:1 hydroxy-galactosylceramide in twitcher specimens. Psychosine, C 16:0 ceramide and C 18:0 galactosylceramide levels were increased in the CNS of twitcher mice compared to levels in control mice. These data indicate that there is a trend toward decreased levels of long chain fatty acids and increased levels of shorter chain fatty acids in galactosylceramides and ceramides from twitcher mice compared with control mice, and such changes may be due to demyelination characteristic of acute pathology.  相似文献   

16.
The classical recessive mouse mutant, "the twitcher," is one of the several animal models of the human globoid cell leukodystrophy (Krabbe disease) caused by a deficiency in the gene encoding the lysosomal enzyme galactosylceramidase (GALC). The failure to hydrolyze galactosylceramide (gal-cer) and galactosylsphingosine (psychosine) leads to degeneration of oligodendrocytes and severe demyelination. Substrate for GALC is also the galactosyl-alkyl-acyl-glycerol (GalAAG), precursor of the seminolipid, the most abundant glycolipid in spermatozoa of mammals. In this paper, we report the pathobiology of the testis and sperm in the twitcher mouse and demonstrate the importance of GALC for normal sperm maturation and function. The GALC deficit results in accumulation of GalAAG in the testis of the twitcher mouse. Morphological studies revealed that affected spermatozoa have abnormally swollen acrosomes and angulation of the flagellum mainly at midpiece-principal piece junction. Multiple folding of the principal piece was also observed. Electron microscopy analysis showed that in the twitcher sperm, acrosomal membrane is redundant, detached from the nucleus and folded over. Disorganization and abnormal arrangements of the axoneme components were also detected. These results provide in vivo evidence that GALC plays a critical role in spermiogenesis.  相似文献   

17.
Porphobilinogen-synthase (PBG-synthase) is an enzyme extensively used as a bioindicator of metals and other oxidizing agents. The objective of this study was to verify the effects of HgCl(2) (5mg/kg/day, s.c.), a metal that mainly affects the nervous and renal systems, on kidney, liver and brain from rats exposed during one of the phases considered critical for development. Mercury decreased PBG-synthase activity from liver, kidney and brain and altered corporal, renal and cerebral weights. The kidney was the most sensitive tissue. It accumulated a large amount of metal and PBG-synthase activity was decreased up to 50%. The second period seemed to be the most sensitive, because in this phase the rats presented alterations in body, brain and kidney weights, and there was also an expressive inhibition in hepatic and renal PBG-synthase activities. In general, large quantities of metal accumulated in the tissues are in agreement with the inhibition verified in these tissues.  相似文献   

18.
2-Hydroxyacyl-CoA lyase (HACL1) is a key enzyme of the peroxisomal α-oxidation of phytanic acid. To better understand its role in health and disease, a mouse model lacking HACL1 was investigated. Under normal conditions, these mice did not display a particular phenotype. However, upon dietary administration of phytol, phytanic acid accumulated in tissues, mainly in liver and serum of KO mice. As a consequence of phytanic acid (or a metabolite) toxicity, KO mice displayed a significant weight loss, absence of abdominal white adipose tissue, enlarged and mottled liver and reduced hepatic glycogen and triglycerides. In addition, hepatic PPARα was activated. The central nervous system of the phytol-treated mice was apparently not affected. In addition, 2OH-FA did not accumulate in the central nervous system of HACL1 deficient mice, likely due to the presence in the endoplasmic reticulum of an alternate HACL1-unrelated lyase. The latter may serve as a backup system in certain tissues and account for the formation of pristanic acid in the phytol-fed KO mice. As the degradation of pristanic acid is also impaired, both phytanoyl- and pristanoyl-CoA levels are increased in liver, and the ω-oxidized metabolites are excreted in urine. In conclusion, HACL1 deficiency is not associated with a severe phenotype, but in combination with phytanic acid intake, the normal situation in man, it might present with phytanic acid elevation and resemble a Refsum like disorder.  相似文献   

19.
Two different lines of solid tumors were produced in outbred hamsters by subcutaneous injection of polyoma transformed BHK cells. Growth of the tumors correlated with the appearance in serum of an electrophoretically distinct peak of galactosyltransferase: NeuAc-, Gal-free fetuin acceptor activity on polyacrylamide gels. This slow moving peak of enzyme activity (GT-HH) was detected before solid tumors could be grossly observed and the amount of activity in this peak was also found to be linearly related with growth of the tumor. GT-IIH was not detectable in control animals and separated from a faster migrating major area of serum galactosyltransferase activity (GT-IH) found in sera of both control and tumor-bearing hamsters. These two activities were shown to maintain their respective mobilities on re-electrophoresis. Solubilized enzyme derived from excised tumors demonstrated an electrophoretic mobility on polyacrylamide gels identical to that for GT-IIH present in serum from tumor-bearing animals. In contrast, enzyme activity solubilized from livers of both control or tumor-bearing hamsters showed a mobility similar to that of the faster moving serum galactosyltransferase enzyme activity, i.e. GT-IH. In addition, medium derived from nonconfluent BHKpy cells in tissue culture contained galactosyltransferase activity which co-electrophoresed with the slower migrating characteristics of galactosyltransferase activities derived from serum (control and tumor-bearing), solid tumors, liver and BHKpy cells in tissue culture were compared. All kinetic properties were similar with the exception that the Km UDP-galactose of GT-IIH (1.0 X 10(-5) M) was half that of GT-IH (2.0 X 10(-5) M).  相似文献   

20.
1. Rat liver microsomal preparations incubated with 200mM-NaCl at either 0 or 30 degrees C released about 20-30% of the membrane-bound UDP-galactose-glycoprotein galactosyl-transferase (EC 2.4.1.22) into a 'high-speed' supernatant. The 'high-speed' supernatant was designated the 'saline wash' and the galactosyltransferase released into this fraction required Triton X-100 for activation. It was purified sixfold by chromatography on Sephadex G-200, and appeared to have a higher molecular weight than the soluble serum enzyme. 2. Rat serum galactosyltransferase was purified 6000-7000-fold by an affinity-chromatographic technique using a column of activated Sepharose 4B coupled with alpha-lactalbumin. The purified enzyme ran as a single broad band on polacrylamide gels and contained no sialytransferase, N-acetylglucosaminyltransferase and UDP-galactose pyrophosphatase activities. 3. The highly purified enzyme had properties similar to those of both soluble and membrane-bound galactosyltransferase. It required 0.1% Triton X-100 for stabilization, but lost activity on freezing. The enzyme had an absolute requirement for Mn2+, not replaceable by Ca2+, Mg2+, Zn2+ or Co2+. It was active over a wide pH range (6-8) and had a pH optimum of 6.8. The apparent Km for UDP-galactose was 12.5 x 10(-6) M. Alpha-Lactalbumin had no appreciable effect on UDP-galactose-glycoprotein galactosyltransferase, but it increased the specificity for glucose rather than for N-acetylglucosamine, thus modifying the enzyme to a lactose synthetase. 4. The possibility of a conversion of higher-molecular-weight liver enzyme into soluble serum enzyme is discussed, especially in relation to the elevated activities of this and other glycosyltransferases in patients with liver diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号