首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ENU is a powerful germline mutagen in the mouse, providing the opportunity to analyze the functions of large numbers of genes in the mammalian genome. In many mutagenesis experiments, it would be beneficial to exploit the advantages of inbred mouse strains. To perform an effective ENU mutagenesis screen using inbred mice, a dosage regimen is required to determine the optimal dose of ENU for that inbred strain, a time-consuming preliminary process. We have carried out dosage regimens for mutagenizing doses of ENU in ten inbred strains of mouse: 129X1/SvJ, 129S6/SvEv, A/J, BALB/cJ, BTBR/N, C3He/J, C3HeB/FeJ, C57BL/6J, C57BR/cdJ, and CBA/CaJ, and determined an optimal dose for each strain, defined by length of sterile period and number of males to survive treatment. Three strains: A/J, BALB/cJ and C57BL/6J, are able to tolerate high doses, up to 300 mg/kg body weight, and are highly recommended for mutagenesis studies.  相似文献   

2.
Differences in dietary fats cause differences in cholesterol metabolism in mice. CBA/J mice are resistant to diet-induced hypercholesterolemia and atherosclerosis; they adjust hepatic hydroxymethyl-glutaryl-CoA reductase activity (HMGR) to maintain homeostasis; C57BR/cdJ mice are susceptible, but young animals are thought to maintain homeostasis by changing fecal excretion of sterols. Compartmental modelling of movement of [4-14C]cholesterol was used to analyze movement of cholesterol between serum and liver, heart, and carcass in mice fed 40 en% fat, polyunsaturated to saturated fatty acid ratio (P/S) = 0.24 (US74) or 30 en% fat, P/S = 1 (MOD). Dietary effects were quite pronounced, while strain effects were more subdued. The C57/cdJ animals appear to regulate the overall cholesterol balance by reducing synthesis, as do the CBA/J animals, even though synthesis is not reduced to the same degree as in the CBA/J animals. Both diet and strain influence the whole-animal turnover rate, with slower turnover occurring for C57BR/cdJ animals and animals fed the US74 diet.  相似文献   

3.
Genetic basis of murine responses to hyperoxia-induced lung injury   总被引:1,自引:0,他引:1  
To evaluate the effect of genetic background on oxygen (O2) toxicity, nine genetically diverse mouse strains (129/SvIm, A/J, BALB/cJ, BTBR+(T)/tf/tf, CAST/Ei, C3H/HeJ, C57BL/6J, DBA/2J, and FVB/NJ) were exposed to more than 99% O2 for 72 h. Immediately following the hyperoxic challenge, the mouse strains demonstrated distinct pathophysiologic responses. The BALB/cJ and CAST/Ei strains, which were the only strains to demonstrate mortality from the hyperoxic challenges, were also the only strains to display significant neutrophil infiltration into their lower respiratory tract. In addition, the O2-challenged BALB/cJ and CAST/Ei mice were among six strains (A/J, BALB/cJ, CAST/Ei, BTBR+(T)/tf/tf, DBA/2J, and C3H/HeJ) that had significantly increased interleukin 6 concentrations in the whole lung lavage fluid and were among all but one strain that had large increases in lung permeability compared with air-exposed controls. In contrast, the DBA/2J strain was the only strain not to have any significant alterations in lung permeability following hyperoxic challenge. The expression of the extracellular matrix proteins, including collagens I, III, and IV, fibronectin I, and tenascin C, also varied markedly among the mouse strains, as did the activities of total superoxide dismutase (SOD) and manganese-SOD (Mn-SOD or SOD2). These data suggest that the response to O2 depends, in part, on the genetic background and that some of the strains analyzed can be used to identify specific loci and genes underlying the response to O2.  相似文献   

4.
The identification and mode of action of genetic loci that program gene expression during development are important for understanding differentiation in higher organisms. Previous work from this laboratory has identified two patterns for the postnatal development of liver beta-galactosidase among inbred mouse strains: type I, where activity levels remain constant after about 30 days of age, is found in strains DBA/2J, CBA/J, and BALB/cJ, among others; type II, where activity levels increase between 25 and 50 days of age to reach a new adult level, is found in strain C57BL/6J and related strains. It has been shown that the type I vs. type II developmental difference between strains C57BL/6J and DBA/2J is due to variation at a locus, Bgl-t, that maps with the beta-galactosidase complex, [Bgl], on chromosome 9. In the present study, we have confirmed the existence of Bgl-t as a temporal locus within [Bgl] by analysis of both a congenic strain carrying the beta-galactosidase complex of strain CBA/J in the C57BL/6J genetic background and a cross of strains CBA/J and C57BL/6J. The existence of additional temporal loci for beta-galactosidase that segregate independently of the structural gene and participate in determination of the type I vs. type II difference was revealed by analysis of: (1) a congenic strain containing the beta-galactosidase complex of strain BALB/cJ in the C57BL/10Sn background; (2) recombinant inbred lines derived from progenitor strains C57BL/6ByJ and BALB/cByJ; and (3) a genetic cross between strains C57BL/6ByJ and BALB/cByJ. Thus, for these pairs of strains, the type I vs. type II developmental difference is due to variation at a temporal locus (or loci) unlinked to the enzyme structural gene, and not at Bgl-t. These facts, together with information gathered from an examination of the distribution of beta-galactosidase phenotypes among over 100 inbred strains (Breen, Lusis and Paigen 1977), have led us to conclude that the postnatal developmental pattern for liver beta-galactosidase is determined by a set of interacting temporal genes. One of these, Bgl-t, is located within [Bgl], and one or more are separable from [Bgl] by recombination. A possible mode of interaction among the temporal and instructural loci is suggested.  相似文献   

5.
We previously reported that mice have at least one major gene determining atherosclerosis susceptibility, Ath-1. Susceptible alleles of Ath-1 are found in strain C57BL/6J and are associated with relatively low levels of high-density lipoprotein cholesterol (HDL-C) when these mice are fed an atherogenic diet. Resistant alleles of Ath-1 are found in strains C3H/HeJ and BALB/cJ and are associated with relatively high levels of HDL-C. Data reported earlier from the set of seven recombinant inbred (RI) strains, derived from C57BL/6By and BALB/cBy, showed that these parental strains differed at Ath-1. However, due to the limited number of RI strains, it was not possible to determine with certainty whether Ath-1 was the only major gene determining atherosclerosis susceptibility in these two strains or to determine its map position accurately. In this report, examination of F1, F2, and backcross progeny from a cross between C57BL/6J and BALB/cJ demonstrates that Ath-1 is the major gene determining atherosclerotic lesion formation and HDL-C levels in female mice. The data from male animals suggest that environmental factors or modifying genes also influence male HDL-C levels and thus partly obscure the Ath-1 phenotype. HDL-C levels in F1 progeny resemble the BALB/c parent. The data from the cross provide confirmatory evidence that Ath-1 is linked to Alp-2 on chromosome 1 with a map distance of 4.8 +/- 2.3 (SE). Combining these data with a previous cross between strain C57BL/6 and strain C3H/HeJ gives a map distance between Ath-1 and Alp-2 of 4.9 +/- 1.8 based on 7 crossovers found among 144 tested chromosomes.  相似文献   

6.
In vitro fertilization with cryopreserved inbred mouse sperm   总被引:8,自引:0,他引:8  
Sperm from C57BL/6J, DBA/2J, BALB/cJ, 129S3/SvImJ, and FVB/NJ inbred mice were cryopreserved in 3% skim milk/18% raffinose cryoprotectant solution. The post-thaw sperm from all strains were evaluated for their viability and fertility by comparing them against B6D2F1 sperm used as a control. The protocol used for freezing mouse sperm was effective in different strains, because the motility was decreased by 50% after cryopreservation similar to other mammalian sperm. However, the progressive motility and the fertility of each inbred strain were affected differently. The C57BL/6J, BALB/cJ, and 129S3/SvImJ strains were the most affected; their fertility (two-cell cleavage) decreased from 70%, 34%, and 84% when using freshly collected sperm to 6%, 12%, and 6% when using frozen/thawed sperm, respectively. Live newborns derived from frozen/thawed sperm were obtained from all strains in the study. These results corroborate the genetic variation among strains with regard to fertility and susceptibility to cryopreservation.  相似文献   

7.
Mouse aldehyde dehydrogenase genetics: Positioning of Ahd-1 on chromosome 4   总被引:1,自引:0,他引:1  
Electrophoretic variants of mitochondrial aldehyde dehydrogenase (AHD-A2) are widely distributed among inbred strains of Mus musculus and have been used to localize the gene encoding AHD-A2(Ahd-1) at the non-centromeric end of chromosome 4. In the mouse (Mus musculus), aldehyde dehydrogenase (AHD; E.C.1.2.1.3) exists as at least three isozymes which are differentially distributed in liver subcellular fractions (designated A2, B4 and Cy* for the mitochondrial, soluble and microsomal isozymes respectively) and in various tissues of this animal (Holmes, 1978a; 1978b; Timms & Holmes, 1981). Electrophoretic variants have been previously reported for the A2 and B4 isozymes among inbred strains of mice, and the genetic loci (designated Ahd-1 and Ahd-2) have been localized on chromosomes 4 and 19 respectively (Holmes, 1978b; Timms & Holmes, 1980). This paper describes further genetic analyses of AHD-A2 enabling Ahd-1 to be positioned at the non-centromeric end of chromosome 4. Forty-three inbred strains of Mus musculus were used in these studies (Table 1). Two series of matings were carried out. 1) Female SM/J mice and male NZC/B1 mice were mated to obtain F, female offspring which were backcrossed to male NZC/B1 mice. These progeny were used to examine the segregation and linkage relationship of b (brown), Pgm-2 (encoding phosphoglucomutase B) and Ahd-1 (Table 2). 2) Female C57BL/6J mice and male SM/J. mice were mated to obtain F, female offspring which were backcrossed to male SM/J mice. The segregation and linkage relationship of Pgm-2, Gpd-1 (encoding the liver and kidney isozyme of hexose-6 phosphate dehydrogenase) and Ahd-1 were examined for these backcross progeny (Table 3). Methods for preparing liver and kidney extracts and the cellulose acetate electrophoresis procedure for typing Ahd-1, Pgm-2 and Gpd-1 have been previously described (Holmes, 1978b). A previous study has described the electrophoretic patterns for allelic variants for mitochondria1 AHD and of the hybrid phenotype for this enzyme (Holmes, 1978b). The three-allelic isozyme pattern for hybrid animals was consistent with a dimeric subunit structure: AHD-A1A2, AHD-A1A2 and AHD-3, with the A1 and A2 subunits being encoded by separate alleles at a single locus, designated Ahd-1 (Ahd-1oand Ahd-1brespectively). The distribution of these alleles among 43 inbred strains of mice is given in Table 1. The allelic variants were approximately equally distributed among the inbred strains examined and no divergence of phenotype was observed among the 6 substrains of C57BL mice (Ahd-1aallele) and 5 substrains of BALB/c (Ahd-1ballele) mice examined. Genetic variants for phosphoglucomutase-B (PGM-B) have been reported by Shows, Ruddle and Roderick (1969) and the gene (Pgm-2) was subsequently localized on chromosome 4 near b (brown) by Chapman, Ruddle and Roderick (1970). Table 2 illustrates the results of a three-point cross between b, Pgm-2 and Ahd-1. Variation from the expected 1:1:1:1:1:1 ratio for unlinked loci was significant(x2= 73.15; 7 df; P < 1 × 10-5), indicating that the three loci are linked. Recombination frequency data are consistent with the gene order: b - Pgm-2 - Ahd-1 The second cross examined the segregation of Pgm-2, Ahd-1 and Gpd-1 loci (Table 3). The latter locus has been previously positioned on chromosome 4 (linkage group VIII) by Hutton & Roderick (1970) and Chapman (1975), and has been used to localize Ahd-1 in this region (Ahd-1 and Gpd-1 exhibit a recombination frequency of 10.3 ± 3.7 %) (Holmes, 1978b). The data from Table 3 is consistent with a gene order of Pgm-2 - Ahd-1 - Gpd-1. The recombination frequency data of Ahd-1 with Gpd-1, Pgm-2 and b also supports the proposal that Ahd-1 is localized between Pgm-2 and Gpd-1 (Tables 2 and 3; Holmes, 1978b). Recent metabolic studies have indicated that mitochondria1 aldehyde dehydrogenase (AHD) plays a very important role in the metabolism of acetaldehyde derived from ethanol, ensuring a low concentration of acetaldehyde in the blood leaving the liver (Grunnet, 1973; Parilla et al., 1974; Corral1 et al., 1976). Moreover, genetic variation of this isozyme in human livers has been recently reported (Harada et al., 1978), and this polymorphism has been proposed as the molecular basis for individual and racial differences in alcohol sensitivity (Goedde et al., 1979). Consequently, genetic analyses of mitochondria1 AHD are of particular significance to studies on the genetic control of alcohol metabolism in mammals. In summary, this report confirms previous studies which demonstrated that the genetic locus encoding mitochondrial aldehyde dehydrogenase in the mouse (Ahd-1) is on chromosome 4 (Holmes, 1978b), and positions the gene with respect to b (brown), Pgrn-2 (encoding phosphoglucomutase B) and Gpd-1 (encoding the liver and kidney isozyme of hexose-6-phosphate dehydrogenase). In addition, the distribution of the 2-allelic phenotypes for this isozyme has been examined among 43 in- bred strains of mice.  相似文献   

8.
9.
We recently have found that apolipoprotein E-deficient (Apoe-/-) mice with the C57BL/6 background develop type 2 diabetes when fed a Western diet for 12 weeks. In the present study we constructed multiple Apoe-/- mouse strains to find diabetes-related phenotyptic variations that might be linked to atherosclerosis development. Evaluation of both early and advanced lesion formation in aortic root revealed that C57BL/6, SWR/J, and SM/J Apoe-/- mice were susceptible to atherosclerosis and that C3H/HeJ and BALB/cJ Apoe-/- mice were relatively resistant. On a chow diet, fasting plasma glucose varied among strains with C3H/HeJ having the highest (171.1 ± 9.7 mg/dl) and BALB/cJ the lowest level (104.0 ± 6.6 mg/dl). On a Western diet, fasting plasma glucose rose significantly in all strains, with C57BL/6, C3H/HeJ and SWR/J exceeding 250 mg/dl. BALB/cJ and C3H/HeJ were more tolerant to glucose loading than the other 3 strains. C57BL/6 was sensitive to insulin while other strains were not. Non-fasting blood glucose was significantly lower in C3H/HeJ and BALB/cJ than C57BL/6, SM/J, and SWR/J. Glucose loading induced the 1st and the 2nd phase of insulin secretion in BALB/cJ, but the 2nd phase was not observed in other strains. Morphological analysis showed that BALB/cJ had the largest islet area (1,421,493 ± 61,244 μm2) and C57BL/6 had the smallest one (747,635 ± 41,798 μm2). This study has demonstrated strain-specific variations in the metabolic and atherosclerotic phenotypes, thus laying the basis for future genetic characterization.  相似文献   

10.
Previous studies have indicated that androgen regulation of certain gene products in murine kidney is genetically controlled. In the present work, the expression of renal ornithine decarboxylase (ODC) gene(s) was used as a biological marker to study androgen responsiveness of eight inbred strains of mice (A/J, C57BR/cdJ, 129/J, C57L/J, BALB/cJ, SM/J, RF/J, and C57BL/6J). Kidneys of untreated females from these strains did not have significantly different basal ODC activities or ODC mRNA concentrations. However, renal enzyme concentrations in intact male mice exhibited marked strain-dependent variation; three strains (RF/J, SM/J, and C57BR/cdJ) had 5- to 20-fold higher activities than the other five strains. Renal ODC mRNA content showed similar genetic variability in the male mice; animals with highest enzyme activity had higher mRNA levels than those with low activity. These results could not be explained by differences in either serum testosterone levels or renal nuclear androgen receptor content, suggesting that the animals were differentially sensitive to endogenous androgens. To evaluate further the androgen regulation of ODC gene expression, female mice were treated with testosterone-releasing implants for 5-7 days. The two strains (A/J and C57BL/6J) that had low enzyme activity in response to endogenous testosterone in male mice also showed blunted responses to exogenous androgen administration, as measured by the induction of ODC and its mRNA. The relative distribution of the two mRNA species coding for ODC (2.2 and 2.7 kb in size) exhibited strain-dependent variation that did not, however, correlate with the androgen responsiveness. Studies of the mRNA levels in reciprocal F1 hybrids of C57BR/cdJ and C57BL/6J mice suggested that androgen sensitivity of ODC gene expression, at least in these crosses, was inherited in an autosomal dominant manner.  相似文献   

11.
The present report demonstrates differential DNA-repair activity among 14 strains of immature (20 ± 2 days old) male mice (inbred strains: C57BL/6J, RF/J, Nude homo/nu, RIII/2J, Pl/J, AKR/J, Nude hetro/nude, C3H/HeJ, SWR/J, SM/J, ST/J, LP/J, BALB/cJ and random-bred strain: CD-1). The prespermiogenic cells were isolated and enriched by collagenase-trypsin digestion of seminiferous tubules and subsequent 3% albumin-gradient centrifugation. Enriched prespermiogenic cells demonstrated a viabiilty greater than 95% by trypan blue exclusion criteria. For in vitro unscheduled DNA synthesis (UDS) determination, prespermiogenic cells (106 cells/ml) were incubated with methyl methanesulfonate (0.4 mM) in the presence of 20 mM hydroxyurea (HU). At 20 mM HU concentration, 90% of S-phase DNA activity in prespermiogenic cells was inhibited and thus, the net UDS activity following MMS exposure was readily determined. MMS-induced UDS activity in the CD-1 mouse strain was both linear up to 4 h of incubation and dose-dependent at 4 h incubation. The apparent Km for MMS-induced UDS activity in prespermiogenic cells was approx. 1.8 × 10?4 M. Of the 14 mice strains tested, C57BL/6J and RF/J exhibited the highest DNA-repair activity, while BALB/cJ, LP/J, and ST/J showed the lowest. A maximal difference in UDS activity fo 3.5-fold was observed between C57BL/6J and BALB/cJ. Furthermore, a 2.5-fold difference was also noted between RF/J and LP/J mouse strains. Thus, wide variations in DNA-repair activity among 14 mouse strans were clearly demonstrated. Whether genetically select mouse strains with the lowest DNA-repair activity should have greater sensitivity toward environmental mutagens needs to be tested.  相似文献   

12.
In vitro and in vivo responses to the 18-kDa protein of Mycobacterium leprae have been analysed in different strains of mice. Lymphocytes from BALB/cJ (H-2d), BALB.B (H-2b), B10.BR (H-2k), and B10.M (H-2f) mice primed with 18-kDa protein yielded high T cell proliferative responses, while those from C57BL/10J (H-2b) mice yielded lower responses. Both H-2 and non-H-2 genes contributed to the magnitude of responsiveness. F1 mice from high and low responder strains showed high responsiveness to the 18-kDa protein. Supernatants from lymph node cell cultures prepared from 18-kDa protein-immunised BALB/cJ, B10.BR, and C57BL/10J mice contained IL-2 but no IL-4, indicating that activated T cells from both high and low responder mice were of a TH1 phenotype. Cell cultures from low responder C57BL/10J mice produced less IL-2 than those from high responders. The low responsiveness to the 18-kDa protein in proliferative assays might be due to a low frequency of antigen-specific T cells in the C57BL/10J mouse strain. BALB/cJ, C57BL/10J, and F1 (BALB/cJ x B10.BR) mouse strains were tested for in vivo DTH reactions to the 18-kDa protein. All strains, including C57BL/10J, were high DTH responders. Although DTH effector cells and 18-kDa protein-specific proliferative T cells belong to the TH1 subset, our data comparing high and low responder status indicate that distinct TH1 subpopulations are stimulated in response to the 18-kDa protein of M. leprae.  相似文献   

13.
Aggressive behaviors are disabling, treatment refractory, and sometimes lethal symptoms of several neuropsychiatric disorders. However, currently available treatments for patients are inadequate, and the underlying genetics and neurobiology of aggression is only beginning to be elucidated. Inbred mouse strains are useful for identifying genomic regions, and ultimately the relevant gene variants (alleles) in these regions, that affect mammalian aggressive behaviors, which, in turn, may help to identify neurobiological pathways that mediate aggression. The BALB/cJ inbred mouse strain exhibits relatively high levels of intermale aggressive behaviors and shows multiple brain and behavioral phenotypes relevant to neuropsychiatric syndromes associated with aggression. The A/J strain shows very low levels of aggression. We hypothesized that a cross between BALB/cJ and A/J inbred strains would reveal genomic loci that influence the tendency to initiate intermale aggressive behavior. To identify such loci, we conducted a genomewide scan in an F2 population of 660 male mice bred from BALB/cJ and A/J inbred mouse strains. Three significant loci on chromosomes 5, 10 and 15 that influence aggression were identified. The chromosome 5 and 15 loci are completely novel, and the chromosome 10 locus overlaps an aggression locus mapped in our previous study that used NZB/B1NJ and A/J as progenitor strains. Haplotype analysis of BALB/cJ, NZB/B1NJ and A/J strains showed three positional candidate genes in the chromosome 10 locus. Future studies involving fine genetic mapping of these loci as well as additional candidate gene analysis may lead to an improved biological understanding of mammalian aggressive behaviors.  相似文献   

14.
We report a Streptobacillus moniliformis epizootic in barrier-maintained SPF mice. Although various inbred and F1 hybrid strains of mice have been kept in this animal facility, only C57BL/6J Han [corrected] mice showed clinical signs of disease. During the course of the epizootic, 825 breeding animals (approximately 36% of the breeders) died or had to be killed because of severe clinical signs. Although sequential treatment with ampicillin and chlortetracycline gave good therapeutic results, the animal facility was vacated in order to exclude any risk of cross-contamination of the other rodent colonies in our institute. The source and route of transmission of S. moniliformis could not be elucidated. To investigate strain dependent differences experimental infection of different strains of mice with our S. moniliformis isolate was performed. After oral infection only C57BL/6J showed the typical signs of a cervical lymphadenitis and gave an immunological response. BALB/cJ, C3H/He, DBA/2J, CB6F1 and B6D2F1 mice were not affected except in two cases of DBA/2J and B6D2F1 mice where seroconversion was observed. After intravenous infection of C57BL/6J, DBA/2J [corrected] and BALB/cJ all animals showed positive titers in the indirect immunofluorescence test (IIF). One hundred percent of the C57BL/6J, forty percent of the DBA/2J, and none of the BALB/cJ mice developed severe symptoms. The results demonstrate that the susceptibility to streptobacillosis is predominantly influenced by genetic factors.  相似文献   

15.
Q- and C-Band Chromosome Markers in Inbred Strains of MUS MUSCULUS   总被引:3,自引:1,他引:2       下载免费PDF全文
Differences in the number of chromosomes with secondary constrictions and in the size of the C-band region on certain chromosomes have been observed among the following inbred strains of Mus musculus: C57BL/10J, C57BR/cdJ, DBA/1J, CBA/J, BALB/cJ, and AKR. These differences are useful as indicators of the location of rRNA genes and as normal chromosome markers. The size of each C-band region appears to remain constant over many generations. Only one probable change in the size of a C-band region was found.  相似文献   

16.
Interindividual and interstrain variations in cholesterol absorption efficiency occur in humans and animals. We investigated physiological biliary and small intestinal factors that might determine variations in cholesterol absorption efficiency among inbred mouse strains. We found that there were significant differences in cholesterol absorption efficiency measured by plasma, fecal, and lymphatic methods: <25% in AKR/J, C3H/J, and A/J strains; 25-30% in SJL/J, DBA/2J, BALB/cJ, SWR/J, and SM/J strains; and 31-40% in C57L/J, C57BL/6J, FVB/J, and 129/SvJ strains. In (AKRxC57L)F1 mice, the cholesterol absorption efficiency (31 +/- 6%) mimicked that of the C57L parent (37 +/- 5%) and was significantly higher than in AKR mice (24 +/- 4%). Although biliary bile salt compositions and small intestinal transit times were similar, C57L mice displayed significantly greater bile salt secretion rates and pool sizes than AKR mice. In examining lymphatic cholesterol transport in the setting of a chronic biliary fistula, C57L mice displayed significantly higher cholesterol absorption rates compared with AKR mice. Because biliary and intestinal transit factors were accounted for, we conclude that genetic variations at the enterocyte level determine differences in murine cholesterol absorption efficiency, with high cholesterol absorption likely to be a dominant trait. This study provides baseline information for identifying candidate genes that regulate intestinal cholesterol absorption at the cellular level.  相似文献   

17.
Murine models of allergic lung disease have many similar traits to asthma in humans and can be used to investigate mechanisms of allergic sensitization and susceptibility factors associated with disease severity. The purpose of this study was to determine strain differences in allergic airway inflammation, immunoglobulin production, and changes in respiratory responses between systemic and mucosal sensitization routes in BALB/cJ, FVB/NJ, and C57BL/6J, and to provide correlations between immune and pathophysiological endpoints. After a single intranasal ovalbumin (OVA) challenge, all three strains of mice systemically sensitized with OVA and adjuvant exhibited higher airflow limitation than non-sensitized mice. No changes were seen in mice that were pre-sensitized via the nose with OVA. Systemic sensitization resulted in an elevated response to methacholine (MCH) in BALB/cJ and FVB/NJ mice and elevated total and OVA-specific IgE levels and pulmonary eosinophils in all three strains. The mucosal sensitization and challenge produced weaker responses in the same general pattern with the C57BL/6J strain producing less serum IgE, IL5, IL13, and eosinophils in lung fluid than the other two strains. The converse was found for IL6 where the C57BL/6J mice had more than twice the amount of this cytokine. The results show that the FVB/NJ and BALB/cJ mice are higher Th2-responders than the C57BL/6J mice and that the levels of pulmonary eosinophilia and cytokines did not fully track with MCH responsiveness. These differences illustrate the need to assess multiple endpoints to provide clearer associations between immune responses and type and severity of allergic lung disease.  相似文献   

18.
Margolis  F. L.  Grillo  M. 《Biochemical genetics》1984,22(5-6):441-451
Carnosinase is a peptidase which cleaves B-alanyl-l-histidine (carnosine) and closely related dipeptides. Its activity in kidney cytosol of various mouse strains varies more than 50-fold. The highest activity occurs in random-bred CD-1 and inbred NZB/BINJ mice, while it is barely detectable in BALB/cJ, C57BL/6J, and AU/SsJ among others. Carnosinase is immunologically and enzymologically identical in all high-activity strains. This is the first report of quantitative interstrain differences in carnosinase activity. No other peptidase activity has been reported which exhibits the same strain distribution shown here. In matings and backcrosses between the NZB/BINJ and the BALB/cJ strains, the levels of kidney carnosinase activity in the progeny behave as a classical Mendelian trait.  相似文献   

19.
We have studied the effects of genotype and dose on the time of onset of ethanol-induced sleep, as measured by fall time, and on the length of sleep. We have also investigated the relationships among genotype, dose and the blood ethanol levels at time of fall and time of awakening in three inbred mouse strains (C57BL/6J, DBA/2J and BALB/cJ). The sleep-time dose response curves are linear for the dose range tested in all three strains. There was no significant linear correlation between dose and blood ethanol level at awakening in any of the three strains. Between-strain comparisons showed significant differences in rate of ethanol clearance from the blood, and differences in tissue sensitivity to ethanol among the strains were demonstrated. Our data suggest that the major factor influencing sleep time is blood alcohol clearance, reflecting differences in alcohol metabolic rates.Between-strain comparisons of fall time showed significant differences, over the dosage range tested, in nervous system tissue sensitivity (as inferred from blood alcohol level at time of fall) between the BALB/cJ strain and the C57BL/6J and DBA/2J strains. Differences between C57BL/6J and DBA/2J strains were significant only at the lowest dose tested. The rank-ordering of the strains with respect to tissue sensitivity to ethanol is identical for all three tissue sensitivity measures obtained in these experiments.  相似文献   

20.
A panel of 78 backcross progeny, BALB/cJ x (BALB/cJ x CAST/Ei)F1, was used to map the gene encoding anti-Müllerian hormone (Amh), also called Müllerian inhibiting substance, to mouse Chromosome 10 (MMU10). This analysis identified a new region of linkage homology between human Chromosome 19p (HSA 19p) and MMU10 and localized an apparent recombinational hot spot in (C57BL/6J x Mus spretus)F1 females [compared with (BALB/cJ x CAST/Ei)F1 males] to the interval between phenylalanine hydroxylase (Pah) and mast cell growth factor (Mgf). In addition, eight unlinked polymorphic sequences, provisionally designated Amh-related sequences (Amh-rs1 through Amh-rs8), were identified by Southern blot analysis using Amh probes. Amh-rs1, -rs2, -rs4, and -rs7 were mapped to MMU1, 13, 12, and 15, respectively, by recombinant inbred (RI) strain and intraspecific backcross analyses. The NXSM RI strain distribution patterns for the four unmapped loci are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号