首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1994,125(6):1289-1301
The fission yeast Schizosaccharomyces pombe divides by medial fission and, like many higher eukaryotic cells, requires the function of an F- actin contractile ring for cytokinesis. In S. pombe, a class of cdc- mutants defective for cytokinesis, but not for DNA replication, mitosis, or septum synthesis, have been identified. In this paper, we present the characterization of one of these mutants, cdc3-124. Temperature shift experiments reveal that mutants in cdc3 are incapable of forming an F-actin contractile ring. We have molecularly cloned cdc3 and used the cdc3+ genomic DNA to create a strain carrying a cdc3 null mutation by homologous recombination in vivo. Cells bearing a cdc3-null allele are inviable. They arrest the cell cycle at cytokinesis without forming a contractile ring. DNA sequence analysis of the cdc3+ gene reveals that it encodes profilin, an actin-monomer-binding protein. In light of recent studies with profilins, we propose that Cdc3-profilin plays an essential role in cytokinesis by catalyzing the formation of the F-actin contractile ring. Consistent with this proposal are our observations that Cdc3-profilin localizes to the medial region of the cell where the F-actin contractile ring forms, and that it is essential for F-actin ring formation. Cells overproducing Cdc3-profilin become elongated, dumbbell shaped, and arrest at cytokinesis without any detectable F-actin staining. This effect of Cdc3-profilin overproduction is relieved by introduction of a multicopy plasmid carrying the actin encoding gene, act1+. We attribute these effects to potential sequestration of actin monomers by profilin, when present in excess.  相似文献   

2.
A Feoktistova  D McCollum  R Ohi  K L Gould 《Genetics》1999,152(3):895-908
The Arp2/3 complex is an essential component of the actin cytoskeleton in yeast and is required for the movement of actin patches. In an attempt to identify proteins that interact with this complex in the fission yeast Schizosaccharomyces pombe, we sought high-copy suppressors of the S. pombe arp3-c1 mutant, and have identified one, which we have termed asp1(+). The asp1(+) open reading frame (ORF) predicts a highly conserved protein of 921 amino acids with a molecular mass of 106 kD that does not contain motifs of known function. Neither asp1(+) nor its apparent Saccharomyces cerevisiae ortholog, VIP1, are essential genes. However, disruption of asp1(+) leads to altered morphology and growth properties at elevated temperatures and defects in polarized growth. The asp1 disruption strain also is hypersensitive to Ca+ ions and to low pH conditions. Although Asp1p is not stably associated with the Arp2/3 complex nor localized in any discrete structure within the cytoplasm, the asp1 disruption mutant was synthetically lethal with mutations in components of the Arp2/3 complex, arp3-c1 and sop2-1, as well as with a mutation in actin, act1-48. Moreover, the vip1 disruption strain showed a negative genetic interaction with a las17Delta strain. We conclude that Asp1p/Vip1p is important for the function of the cortical actin cytoskeleton.  相似文献   

3.
We report studies of the fission yeast fimbrin-like protein Fim1, which contains two EF-hand domains and two actin-binding domains (ABD1 and ABD2). Fim1 is a component of both F-actin patches and the F-actin ring, but not of F-actin cables. Fim1 cross-links F-actin in vitro, but a Fim1 protein lacking either EF-hand domains (Fim1A12) or both the EF-hand domains and ABD1 (Fim1A2) has no actin cross-linking activity. Overexpression of Fim1 induced the formation of F-actin patches throughout the cell cortex, whereas the F-actin patches disappear in cells overexpressing Fim1A12 or Fim1A2. Thus, the actin cross-linking activity of Fim1 is probably important for the formation of F-actin patches. The overexpression of Fim1 also excluded the actin-depolymerizing factor Adf1 from the F-actin patches and inhibited the turnover of actin in these structures. Thus, Fim1 may function in stabilizing the F-actin patches. We also isolated the gene encoding Acp1, a subunit of the heterodimeric F-actin capping protein. fim1 acp1 double null cells showed more severe defects in the organization of the actin cytoskeleton than those seen in each single mutant. Thus, Fim1 and Acp1 may function in a similar manner in the organization of the actin cytoskeleton. Finally, genetic studies suggested that Fim1 may function in cytokinesis in cooperation with Cdc15 (PSTPIP) and Rng2 (IQGAP), respectively.  相似文献   

4.
Four mutants defective in endocytosis were isolated by screening a collection of temperature-sensitive yeast mutants. Three mutations define new END genes: end5-1, end6-1, and end7-1. The fourth mutation is in END4, a gene identified previously. The end5-1, end6-1, and end7-1 mutations do not affect vacuolar protein localization, indicating that the defect in each mutant is specific for internalization at the plasma membrane. Interestingly, localization of actin patches on the plasma membrane is affected in each of the mutants. end5-1, end6-1, and end7-1 are allelic to VRP1, RVS161, and ACT1, respectively. VRP1 and RVS161 are required for correct actin localization and ACT1 encodes actin. To our surprise, the end6-1 mutation fails to complement the act1-1 mutation. Disruption of the RVS167 gene, which is homologous to END6/RVS161 and which is also required for correct actin localization, also blocks endocytosis. The end7-1 mutant allele has a glycine 48 to aspartic acid substitution in the DNase I-binding loop of actin. We propose that Vrp1p, Rvs161p, and Rvs167p are components of a cytoskeletal structure that contains actin and fimbrin and that is required for formation of endocytic vesicles at the plasma membrane.  相似文献   

5.
AEM. Adams  D. Botstein 《Genetics》1989,121(4):675-683
A gene whose product is likely to interact with yeast actin was identified by the isolation of pseudorevertants carrying dominant suppressors of the temperature-sensitive (Ts) act1-1 mutation. Of 30 independent revertants analyzed, 29 were found to carry extragenic suppressor mutations and of these, 24/24 tested were found to be linked to each other. This linkage group identifies a new gene SAC6, whose product, by several genetic criteria, is likely to interact intimately with actin. First, although act1-1 sac6 strains are temperature-independent (Ts+), 4/17 sac6 mutant alleles tested are Ts in an ACT1+ background. Moreover, four Ts+ pseudorevertants of these ACT1+ sac6 mutants carry suppressor mutations in ACT1; significantly, three of these are again Ts in a SAC6+ background, and are most likely new act1 mutant alleles. Thus, mutations in ACT1 and SAC6 can suppress each other's defects. Second, sac6 mutations can suppress the Ts defects of the act1-1 and act1-2, but not act1-4, mutations. This allele specificity indicates the sac6 mutations do not suppress by simply bypassing the function of actin at high temperature. Third, act1-4 sac6 strains have a growth defect greater than that due to either of the single mutations alone, again suggesting an interaction between the two proteins. The mutant sac6 gene was cloned on the basis of dominant suppression from an act1-1 sac6 mutant library, and was then mapped to chromosome IV, less than 2 cM from ARO1.  相似文献   

6.
Nakano K  Bunai F  Numata O 《FEBS letters》2005,579(28):6311-6316
We identified a novel actin-modulating protein Stg 1 in the fission yeast Schizosaccharomyces pombe. Stg 1 is similar to mammalian SM22/transgelin, and biochemical experiments showed that Stg 1 crosslinked F-actin. Microscopic observation suggested that Stg 1 was a component of actin patch. Overexpression of Stg 1 caused a defect in cytokinesis by suppressing the formation of a contractile ring and formation of abnormal aggregates of F-actin in the ends and mid-region of cells. Although distribution of the actin cytoskeleton was not affected by disrupting Stg 1(+), genetic interaction suggested that Stg 1 was likely involved in controlling the organization of the actin cytoskeleton in cell morphogenesis and cytokinesis in fission yeast.  相似文献   

7.
Mutations in cardiac actin (ACTC) have been associated with different cardiac abnormalities in humans, including dilated cardiomyopathy and septal defects. However, it is still poorly understood how altered ACTC structure affects cardiovascular physiology and results in the development of distinct congenital disorders. A zebrafish mutant (s434 mutation) was identified that displays blood regurgitation in a dilated heart and lacks endocardial cushion (EC) formation. We identified the mutation as a single nucleotide change in the alpha-cardiac actin 1a gene (actc1a), resulting in a Y169S amino acid substitution. This mutation is located at the W-loop of actin, which has been implicated in nucleotide sensing. Consequently, s434 mutants show loss of polymerized cardiac actin. An analogous mutation in yeast actin results in rapid depolymerization of F-actin into fragments that cannot reanneal. This polymerization defect can be partially rescued by phalloidin treatment, which stabilizes F-actin. In addition, actc1a mutants show defects in cardiac contractility and altered blood flow within the heart tube. This leads to downregulation or mislocalization of EC-specific gene expression and results in the absence of EC development. Our study underscores the importance of the W-loop for actin functionality and will help us to understand the structural and physiological consequences of ACTC mutations in human congenital disorders.  相似文献   

8.
Factors that are involved in actin polymerization, such as the Arp2/3 complex, have been found to be packaged into discrete, motile, actin-rich foci. Here we investigate the mechanism of actin-patch motility in S. pombe using a fusion of green fluorescent protein (GFP) to a coronin homologue, Crn1p. Actin patches are associated with cables and move with rates of 0.32 microm s(-1) primarily in an undirected manner at cell tips and also in a directed manner along actin cables, often away from cell tips. Patches move more slowly or stop when actin polymerization is attenuated by Latrunculin A or in arp3 and cdc3 (profilin) mutants. In a cdc8 (tropomyosin) mutant, actin cables are absent, and patches move with similar speed but in a non-directed manner. Patches are sites of Arp3-dependent F-actin polymerization in vitro. Rapid F-actin turnover rates in vivo indicate that patches and cables are maintained continuously by actin polymerization. Our studies give rise to a model in which actin patches are centres for actin polymerization that drive their own movement on actin cables using Arp2/3-based actin polymerization.  相似文献   

9.
A formin Bni1p nucleates actin to assemble actin cables, which guide the polarized transport of secretory vesicles in budding yeast. We identified mutations that suppressed both the lethality and the excessive actin cable formation caused by overexpression of a truncated Bni1p (BNI1DeltaN). Two recessive mutations, act1-301 in the actin gene and sla2-82 in a gene involved in cortical actin patch assembly, were identified. The isolation of sla2-82 was unexpected, because cortical actin patches are required for the internalization step of endocytosis. Both act1-301 and sla2-82 exhibited synthetic growth defects with bni1Delta. act1-301, which resulted in an E117K substitution, interacted genetically with mutations in profilin (PFY1) and BUD6, suggesting that Act1-301p was not fully functional in formin-mediated polymerization. sla2-82 also interacted genetically with genes involved in actin cable assembly. Some experiments, however, suggested that the effects of sla2-82 were caused by depletion of actin monomers, because the temperature-sensitive growth phenotype of the bni1Delta sla2-82 mutant was suppressed by increased expression of ACT1. The isolation of suppressors of the BNI1DeltaN phenotype may provide a useful system for identification of actin amino-acid residues that are important for formin-mediated actin polymerization and mutations that affect the availability of actin monomers.  相似文献   

10.
Eukaryotic cells contain many actin-interacting proteins, including the alpha-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an alpha-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin-dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin-dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation.  相似文献   

11.
Eight functional actin genes are present in ARABIDOPSIS: The functional characterization of these genes in loss-of-function mutants is difficult, because highly conserved isovariants are generally expressed in the same tissue. We isolated a novel semi-dominant mutant allele (act2-2D) of an actin gene, ACT2, with a missense mutation which causes an amino acid substitution at the surface of the ACT2 protein. ACT2 promoter::ACT2-2D transgenic plants showed the same phenotype as act2-2D, indicating that act2-2D is a dominant-negative mutant. act2-2D exhibited defects in the initiation and elongation of root hairs, the elongation of root epidermal cells, and growth in aerial portions. Specifically, radial cell expansion was reduced and occasional cell death occurred in trichoblasts but not in atrichoblasts of the root epidermis. In contrast, cell division patterns in the root meristem were not affected. act2-3, a loss-of-function ACT2 mutant, did not develop most of these morphological abnormalities. Actin filament (F-actin) bundles in root epidermal cells of act2-2D were shorter than in the wild type and in the loss-of-function mutant. We conclude that defective F-actin polymerization caused the aberrant cell morphology in a dominant-negative manner, and that ACT2 functions in cell elongation and root hair formation.  相似文献   

12.
Actin with a Val 159 to Asn mutation (V159N) forms actin filaments that depolymerize slowly because of a failure to undergo a conformational change after inorganic phosphate release. Here we demonstrate that expression of this actin results in reduced actin dynamics in vivo, and we make use of this property to study the roles of rapid actin filament turnover. Yeast strains expressing the V159N mutant (act1-159) as their only source of actin have larger cortical actin patches and more actin cables than wild-type yeast. Rapid actin dynamics are not essential for cortical actin patch motility or establishment of cell polarity. However, fluid phase endocytosis is defective in act1-159 strains. act1-159 is synthetically lethal with cofilin and profilin mutants, supporting the conclusion that mutations in all of these genes impair the polymerization/ depolymerization cycle. In contrast, act1-159 partially suppresses the temperature sensitivity of a tropomyosin mutant, and the loss of cytoplasmic cables seen in fimbrin, Mdm20p, and tropomyosin null mutants, suggesting filament stabilizing functions for these actin-binding proteins. Analysis of the cables in these double-mutant cells supports a role for fimbrin in organizing cytoplasmic cables and for Mdm20p and tropomyosin in excluding cofilin from the cables.  相似文献   

13.
Profilins bind to monomeric actin and also interact with ligands such as phosphoinositide 4,5-bisphosphate, the proline-rich protein VASP and a complex of four to six polypeptides identified in Acanthamoeba that includes two actin-related proteins. Here, we report the identification and characterization of an essential gene from Schizosaccharomyces pombe, sop2+, a mutation in which rescues the temperature-sensitive lethality of a profilin mutation, cdc3-124. The sop2-1 mutant is defective for cell elongation and septation, suggesting that it is involved in multiple cortical actin-requiring processes. Consistent with a role in actin cytoskeletal function, negative interactions have been identified between sop2-1 and act1-48, a mutant allele of actin. Sop2p is a novel 377 amino acid polypeptide with similarity to proteins of the beta-transducin repeat family. Sop2p-related proteins have been identified by sequencing projects in diverse species, and we have isolated a human cDNA highly related to sop2+, SOP2 Hs, which functionally complements the sop2-1 mutation. Sop2p proteins from all species contain peptide sequences identical or highly similar to two peptide sequences from an Acanthamoeba beta-transducin repeat protein present in the profilin binding complex. Biochemical analyses demonstrate that Sop2p is present in a complex which also contains the actin-related protein, Arp3p. Immunofluorescence studies reveal the presence of Sop2p in (i) punctate structures distributed throughout the cell, (ii) cables that extend the length of the cell, and (iii) a medial band in a small percentage of septating cells. Collectively these data demonstrate the interaction of Sop2p with Arp3p, profilin and actin.  相似文献   

14.
Schizosaccharomyces pombe is an excellent organism in which to study cytokinesis as it divides by medial fission using an F-actin contractile ring. To enhance our understanding of the cell division process, a large genetic screen was carried out in which 17 genetic loci essential for cytokinesis were identified, 5 of which are novel. Mutants identifying three genes, rng3(+), rng4(+), and rng5(+), were defective in organizing an actin contractile ring. Four mutants defective in septum deposition, septum initiation defective (sid)1, sid2, sid3, and sid4, were also identified and characterized. Genetic analyses revealed that the sid mutants display strong negative interactions with the previously described septation mutants cdc7-24, cdc11-123, and cdc14-118. The rng5(+), sid2(+), and sid3(+) genes were cloned and shown to encode Myo2p (a myosin heavy chain), a protein kinase related to budding yeast Dbf2p, and Spg1p, a GTP binding protein that is a member of the ras superfamily of GTPases, respectively. The ability of Spg1p to promote septum formation from any point in the cell cycle depends on the activity of Sid4p. In addition, we have characterized a phenotype that has not been described previously in cytokinesis mutants, namely the failure to reorganize actin patches to the medial region of the cell in preparation for septum formation.  相似文献   

15.
Mutations conferring synthetic lethality in combination with null mutations in CAP2, the gene encoding the β subunit of capping protein of Saccharomyces cerevisiae, were obtained in a colony color assay. Monogenic inheritance was found for four mutations, which were attributed to three genetic loci. One mutation, sac6-69, is in the gene encoding fimbrin, another actin-binding protein, which was expected because null mutations in SAC6 and CAP2 are known to be synthetic-lethal. The other two loci were designated slc for synthetic lethality with cap2. These loci include the mutations slc1-66, slc1-87 and slc2-107. The slc mutations are semi-dominant, as shown by incomplete complementation in slc/SLC cap2/cap2 heterozygotes. The slc mutations and sac6-69 interact with each other, as shown by enhanced phenotypes in diheterozygotes. Moreover, the haploid slc2-107 sac6-69 double mutant is inviable. In a CAP2 background, the slc mutations lead to temperature and osmotic sensitivity. They alter the distribution of the actin cytoskeleton, including deficits in the presence of actin cables and the polarization of cortical actin patches. The slc mutations also lead to a pseudomycelial growth pattern. Together these results suggest that slc1 and slc2 encode components of the actin cytoskeleton in yeast and that the actin cytoskeleton can regulate the patterns of growth.  相似文献   

16.
The BAR adaptor proteins encoded by the RVS167 and RVS161 genes from Saccharomyces cerevisiae form a complex that regulates actin, endocytosis, and viability following starvation or osmotic stress. In this study, we identified a human homolog of RVS161, termed BIN3 (bridging integrator-3), and a Schizosaccharomyces pombe homolog of RVS161, termed hob3+ (homolog of Bin3). In human tissues, the BIN3 gene was expressed ubiquitously except for brain. S. pombe cells lacking Hob3p were often multinucleate and characterized by increased amounts of calcofluor-stained material and mislocalized F-actin. For example, while wild-type cells localized F-actin to cell ends during interphase, hob3Delta mutants had F-actin patches distributed randomly around the cell. In addition, medial F-actin rings were rarely found in hob3Delta mutants. Notably, in contrast to S. cerevisiae rvs161Delta mutants, hob3Delta mutants showed no measurable defects in endocytosis or response to osmotic stress, yet hob3+ complemented the osmosensitivity of a rvs161Delta mutant. BIN3 failed to rescue the osmosensitivity of rvs161Delta, but the actin localization defects of hob3Delta mutants were completely rescued by BIN3 and partially rescued by RVS161. These findings suggest that hob3+ and BIN3 regulate F-actin localization, like RVS161, but that other roles for this gene have diverged somewhat during evolution.  相似文献   

17.
More than 30 mutations in ACTA2, which encodes α-smooth muscle actin, have been identified to cause autosomal dominant thoracic aortic aneurysm and dissection. The mutation R256H is of particular interest because it also causes patent ductus arteriosus and moyamoya disease. R256H is one of the more prevalent mutations and, based on its molecular location near the strand-strand interface in the actin filament, may affect F-actin stability. To understand the molecular ramifications of the R256H mutation, we generated Saccharomyces cerevisiae yeast cells expressing only R256H yeast actin as a model system. These cells displayed abnormal cytoskeletal morphology and increased sensitivity to latrunculin A. After cable disassembly induced by transient exposure to latrunculin A, mutant cells were delayed in reestablishing the actin cytoskeleton. In vitro, mutant actin exhibited a higher than normal critical concentration and a delayed nucleation. Consequently, we investigated regulation of mutant actin by formin, a potent facilitator of nucleation and a protein needed for normal vascular smooth muscle cell development. Mutant actin polymerization was inhibited by the FH1-FH2 fragment of the yeast formin, Bni1. This fragment strongly capped the filament rather than facilitating polymerization. Interestingly, phalloidin or the presence of wild type actin reversed the strong capping behavior of Bni1. Together, the data suggest that the R256H actin mutation alters filament conformation resulting in filament instability and misregulation by formin. These biochemical effects may contribute to abnormal histology identified in diseased arterial samples from affected patients.  相似文献   

18.
《The Journal of cell biology》1996,133(6):1307-1319
A novel gene, designated byr4, was identified in Schizosaccharomyces pombe that affects the mitotic cell cycle and shows genetic interactions with the ras1 signaling pathways. Null alleles of byr4 cause cell cycle arrest in late mitosis and permit multiple rounds of septation. The multiple septa typically divide two nuclei, but the nuclei frequently do not stain equally with 4',6-diamidino-2- phenylindole (DAPI), suggesting that byr4 is required for proper karyokinesis. Overexpression of byr4 inhibits cytokinesis, but cell cycle progression continues leading to multinucleate cells. When byr4 is overexpressed, the early steps in the cytokinesis pathway, including formation of the medial F-actin ring, occur normally; however, the later steps in the pathway, including contraction of the F-actin ring, septation, and rearrangement of the medial F-actin following mitosis, rarely occur, byr4 shows two genetic interactions with ras1. The inhibition of cytokinesis by byr4 overexpression was exacerbated by null alleles of ras1 and scd1, suggesting a link between pathways needed for cell polarity and cytokinesis. Overexpression of byr4 also partially bypasses the need for ras1 for sporulation. The electrophoretic mobility of the byr4 protein varied in response to mutants that perturb cytokinesis and karyokinesis, suggesting interactions between byr4 and these gene products. A more rapidly migrating byr4 protein was found in cells with mutations in cdc16, which undergo repeated septation, and in cdc15, which fail to form a medial F-actin ring in mitosis. A slower migrating byr4 protein was found in cells with a mutation in the beta-tubulin gene, which arrests cells at the metaphase-anaphase transition.  相似文献   

19.
Cytokinesis separates cells by contraction of a ring composed of filamentous actin (F-actin) and type II myosin. Iqg1, an IQGAP family member, is an essential protein in Saccharomyces cerevisiae required for assembly and contraction of the actomyosin ring. Localization of F-actin to the ring occurs only after anaphase and is mediated by the calponin homology domain (CHD) of Iqg1, but the regulatory mechanisms that temporally restrict actin ring assembly are not well defined. We tested the hypothesis that dephosphorylation of four perfect cyclin-dependent kinase (Cdk) sites flanking the CHD promotes actin ring formation, using site-specific alanine mutants. Cells expressing the nonphosphorylatable iqg1-4A allele formed actin rings before anaphase and exhibited defects in myosin contraction and cytokinesis. The Cdc14 phosphatase is required for normal cytokinesis and acts on specific Cdk phosphorylation sites. Overexpression of Cdc14 resulted in premature actin ring assembly, whereas inhibition of Cdc14 function prevented actin ring formation. Cdc14 associated with Iqg1, dependent on several CHD-flanking Cdk sites, and efficiently dephosphorylated these sites in vitro. Of importance, the iqg1-4A mutant rescued the inability of cdc14-1 cells to form actin rings. Our data support a model in which dephosphorylation of Cdk sites around the Iqg1 CHD by Cdc14 is both necessary and sufficient to promote actin ring formation. Temporal control of actin ring assembly by Cdk and Cdc14 may help to ensure that cytokinesis onset occurs after nuclear division is complete.  相似文献   

20.
Ren N  Charlton J  Adler PN 《Genetics》2007,176(4):2223-2234
Adult Drosophila are decorated with several types of polarized cuticular structures, such as hairs and bristles. The morphogenesis of these takes place in pupal cells and is mediated by the actin and microtubule cytoskeletons. Mutations in flare (flr) result in grossly abnormal epidermal hairs. We report here that flr encodes the Drosophila actin interacting protein 1 (AIP1). In other systems this protein has been found to promote cofilin-mediated F-actin disassembly. In Drosophila cofilin is encoded by twinstar (tsr). We show that flr mutations result in increased levels of F-actin accumulation and increased F-actin stability in vivo. Further, flr is essential for cell proliferation and viability and for the function of the frizzled planar cell polarity system. All of these phenotypes are similar to those seen for tsr mutations. This differs from the situation in yeast where cofilin is essential while aip1 mutations result in only subtle defects in the actin cytoskeleton. Surprisingly, we found that mutations in flr and tsr also result in greatly increased tubulin staining, suggesting a tight linkage between the actin and microtubule cytoskeleton in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号