首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strom  E. V.  Dinarieva  T. Yu.  Netrusov  A. I. 《Microbiology》2004,73(2):124-128
The cbo-type oxidase of Methylobacillus flagellatus KT was purified to homogeneity by preparative native gel electrophoresis, and the kinetic properties and substrate specificity of the enzyme were studied. Ascorbate and ascorbate/N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) were oxidized by cytochrome cbo with a pH optimum of 8.3. With TMPD as an electron donor for the cbo-type oxidase, the optimal pH (7.0 to 7.6) was determined from the difference between respiration rates in the presence of ascorbate/TMPD and only ascorbate. The kinetic constants determined at pH 7.0 were as follows: oxidation by the enzyme of reduced TMPD was characterized by K M = 0.86 mM and V max = 1.1 mol O2/(min mg protein), and oxidation of reduced horse heart cytochrome c was characterized by K M = 0.09 mM and V max = 0.9 mol O2/(min mg protein). Cyanide inhibited ascorbate/TMPD–oxidase activity (K i = 4.5–5.0 M). The soluble cytochrome c H (12 kDa), partially purified from M. flagellatus KT, was found to serve as a natural electron donor for the cbo-type oxidase.  相似文献   

2.
Four recently described species of new genera of sulfate-reducing bacteria, Desulfobulbus propionicus, Desulfobacter postgatei, Desulfococcus multivorans and Desulfosarcina variabilis were examined with respect to adenylylsulfate reductase. All of the species examined contained the enzyme in sufficient concentrations to account for dissimilatory sulfate reduction.Adenylylsulfate reductase was enriched 17.1-fold from Desulfobulbus propionicus by ammonium sulfate fractionation, ion exchange chromatography and gel filtration. The molecular weight was 175,000 and the enzyme contained 1 mol of flavin, 8 mol of non heme iron and 8 mol of labile sulfide per mol enzyme. Either ferricyanide or cytochrome c could be used as electron acceptors; the pH optimum was 7.7 with ferricyanide and 8.8 with cytochrome c. K m values for AMP and sulfite were 90 M and 1.3 M with ferricyanide and 91 M and 71 M with cytochrome c as electron acceptor. K m values for ferricyanide and cytochrome c were 89 M and 21 M, respectively. The properties of the enzyme were compared with those of purified adenylylsulfate reductases from other microorganisms.Non-common abbreviation APS adenylylsulfate  相似文献   

3.
Wheat for human consumption (140 samples) was collected after harvest from all regions of Bulgaria. The 1995 crop year was characterized by heavy rainfall in the spring and summer months. The internal mycoflora of wheat samples was dominated by Fusarium spp. and Alternaria spp., and storage fungi were rarely present. The samples were analysed for contamination with Fusarium mycotoxins deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), T-2 Toxin (T-2), diacetoxyscirpenol (DAS), and zearalenone (ZEA), using enzyme immunoassay methods. DON and ZEA were the predominant toxins, with a contamination frequency of 67% and 69%, respectively. The average levels of these toxins in positive samples were 180 g/kg (DON) and 17 g/kg (ZEA), maximum concentrations were 1800 g kg–1 and 120 g kg–1, respectively. Acetyl derivatives of DON, namely 3-AcDON and 15-AcDON, were found in 2.1 % and 0.7% of the samples, at at maximum level of about 100 g kg–1. Only one sample was positive for T-2 (55 g/kg), DAS was not detected. This is the first report about the natural occurrence of a range of Fusarium mycotoxins in wheat for human consumption in Bulgaria.Abbreviations 3-AcDON 3-acetyldeoxynivalenol - 15-AcDON 15-acetyldeoxynivalenol - DAS diacetoxyscirpenol - DON deoxynivalenol - EIA enzyme immunoassay - T-2 T-2 toxin - ZEA zearalenone  相似文献   

4.
The effect of moderate (50 M) and high (200 M) doses of Cd were studied in relation to polyamine (Pas) metabolism, proline level and the glutamine synthetase/glutamate synthase system (GS/GOGAT) activity in nodules and roots of soybean plants during 6 days of treatment. The lower Cd concentration increased putrescine (Put) in both nodules and roots, while 200 M Cd increased Spm only in nodules and Put in roots. Spermidine (Spd) decreased in roots under both Cd concentrations. Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were both involved in Put biosynthesis in roots. In nodules, Put formation could mainly be attributed to ODC activity. Diamine oxidase (DAO) activity was severely reduced by 50 and 200 M Cd either in nodules or roots. The GS/GOGAT system activity was depressed either with 50 or 200 M Cd, but most significantly with the highest metal concentration. Under 200 M Cd, GS activity decayed to 25% or 60% of the control in nodules and roots, respectively, while GOGAT decreased 85% in nodules and 79% in roots by day 4 of treatment. Ammonium increased greatly in nodules (200% over the controls) and roots (100%) under 200 M Cd. Proline concentration increased significantly in nodules and roots under both Cd treatments, more markedly under 200 M Cd. The relationship between Pas and proline accumulation and nitrogen assimilation is discussed.  相似文献   

5.
Superoxide dismutase has been purified to homogeneity from aerobically grown Thiobacillus denitrificans strain RT. It has a molecular weight of 43,000, is composed of two identical subunits which are not covalently bound, and contains 1.35 atom of iron per molecule. Absorption spectra and amino acid analysis are similar to those of other Fe-superoxide dismutases from bacteria. Aerobically and anaerobically grown cells contain the same Fe-enzyme with similar levels of activity. Manometric sulfite oxidation measurements suggest for the enzyme a protective function of sulfite against the autooxidation initiated by superoxide free radicals.Non-Standard Abbreviations DMSO dimethyl sulfoxide - SDS sodium dodecyl sulfate - SOD superoxide dismutase  相似文献   

6.
Y. -N. Hong  P. Schopfer 《Planta》1981,152(4):325-335
The peroxisomal enzyme, urate oxidase (EC 1.7.3.3), and the next enzyme of the urate pathway, allantoinase (EC 3.5.2.5), demonstrate a lightmediated rise of activity in the cotyledons of mustard (Sinapis alba L.). The capacity of the peroxisomes for urate breakdown, marked by the time course of urate oxidase, develops distinctly later than the two other peroxisome functions (fatty acid breakdown, glyoxysomal function; glycolate breakdown, leaf peroxisomal function). The light effect on urate oxidase and allantoinase is mediated through the phytochrome system in all three seedling organs (cotyledons, hypocotyl, radicle), as revealed by induction/reversion experiments with red/far-red light pulses and continuous irradiation with far-red light (high irradiance reaction of phytochrome). Both enzyme activities can be induced by phytochrome in the seedling cotyledons only during a sensitive period of about 48 h prior to the actual light-mediated rise of activity, making it necessary to assume the existence of a long-lived intermediate (transmitter) in the signal response chain connecting enzyme formation to the phytochrome system. Detailed kinetic investigation, designed to test whether urate oxidase and allantoinase are controlled by phytochrome via the same signal response chain (coordinate induction), revealed large differences between the two enzymes: (i) a different onset of the loss of reversibility of a red light induction by a far-red light pulse (=onset of transmitter formation=coupling point; 48 h/24 h after sowing for urate oxidase/allantoinase); (ii) a different onset of the response (=onset of competence for transmitter= starting point; 72 h/48 h); (iii) full loss of reversibility (=completion of transmitter formation) is reached at different times (independence point, 90 h/52 h). These differences show that phytochrome controls urate oxidase and allantoinase via separate signal response chains. While urate oxidase can be localized in the peroxisomal fraction isolated from crude organelle extracts of the cotyledons by density gradient centrifugation, most of the allantoinase activity found in the peroxisomal fraction did not appear to be an integral part of the peroxisome but originated presumably from adhering membrane fragments.Abbreviations AL allantoinase, EC 3.5.2.5 - CAT catalase, EC 1.11.1.6 - GO glycolate oxidase, EC 1.1.3.1 - ICL isocitrate lyase, EC 4.1.3.1 - UO urate oxidase, EC 1.7.3.3. Pr - Pfr red and far-red absorbing forms of phytochrome On the occasion of his 80th birthday we dedicate this paper to Prof. Dr. phil., Dr. mult. h.c. Kurt Mothes, pioneer in research on metabolism of urates  相似文献   

7.
Cytochrome c oxidase (EC 1.9.3.1) is one of the components of the electron transport chain by which Nitrobacter, a facultative lithoautotrophic bacterium, recovers energy from nitrite oxidation. The genes encoding the two catalytic core subunits of the enzyme were isolated from a Nitrobacter winogradskyi gene library. Sequencing of one of the 14 cloned DNA segments revealed that the subunit genes are side by side in an operon-like cluster. Remarkably the cluster appears to be present in at least two copies per genome. It extends over a 5–6 kb length including, besides the catalytic core subunit genes, other cytochrome oxidase related genes, especially a heme O synthase gene. Noteworthy is the new kind of gene order identified within the cluster. Deduced sequences for the cytochrome oxidase subunits and for the heme O synthase look closest to their counterparts in other -subdivision Proteobacteria, particularly the Rhizobiaceae. This confirms the phylogenetic relationships established only upon 16S rRNA data. Furthermore, interesting similarities exist between N. winogradskyi and mitochondrial cytochrome oxidase subunits while the heme O synthase sequence gives some new insights about the other similar published -subdivision proteobacterial sequences.Abbreviations COI cytochrome oxidase subunit I - COII cytochrome oxidase subunit II - COIII cytochrome oxidase subunit III - HOS Heme O synthase - ORF open reading frame - SDS sodium dodecyl sulfate  相似文献   

8.
Particulate membrane preparations have been isolated from cambial cells, and from differentiating and differentiated xylem cells of the main stem of pine trees. These preparations synthesise a 14 glucomannan from guanosine 5-diphosphate-mannose. The polysaccharide and the synthase have been characterized and the Km and Vmax for the synthase determined as 85 M and 52.9 M·min-1, respectively. The enzymic activity was inhibited by the addition of guanosine 5-diphosphate-D-glucose so that the presence of an epimerase on the particulate fraction in conjunction with the synthase probably allowed the heteropolymer to be formed with the optimal ratio of the concentrations of the nucleoside-diphosphate sugar donors. No evidence for a polyprenyl-phosphate derivative as an intermediate during the polymer synthesis was obtained. Part of the control mechanism for the deposition of the large amounts of the glucomannan during the secondary thickening of the tracheids of the vascular system is by an increase in the amount of synthase activity at the endomembrane system of the cells. This probably occurs by an increase in the amount of enzyme which is modulated by gene regulation during differentiation.Abbreviations GDP guanosine 5-diphosphate - GLC gasliquid chromatography  相似文献   

9.
The activities and kinetics of the enzymes G6PDH (glucose-6-phosphate dehydrogenase) and 6PGDH (6-phosphogluconate dehydrogenase) from the mesophilic cyanobacterium Synechococcus 6307 and the thermophilic cyanobacterium Synechococcus 6716 are studied in relation to temperature. In Synechococcus 6307 the apparent K m's are for G6PDH: 80M (substrate) and 20M (NADP+); for 6PGDH: 90M (substrate) and 25M (NADP+). In Synechococcus 6716 the apparent K m's are for G6PDH: 550M (substrate) and 30M (NADP+); for 6PGDH: 40M (substrate) and 10M (NADP+). None of the K m's is influenced by the growth temperature and only the K m's of G6PDH for G6P are influenced by the assay temperature in both organisms. The idea that, in general, thermophilic enzymes possess a lower affinity for their substrates and co-enzymes than mesophilic enzymes is challenged.Although ATP, ribulose-1,5-bisphosphate, NADPH and pH can all influence the activities of G6PDH and 6PGDH to a certain extent (without any difference between the mesophilic and the thermophilic strain), they cannot be responsible for the total deactivation of the enzyme activities observed in the light, thus blocking the pentose phosphate pathway.Abbreviations G6PDH glucose-6-phosphate, dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - G6P glucose-6-phosphate - 6PG 6-phosphogluconate - RUDP ribulose-1,5-bisphosphate - Tricine N-Tris (hydroxymethyl)-methylglycine  相似文献   

10.
An inducible sulfite reductase was purified from Clostridium pasteurianum. The pH optimum of the enzyme is 7.5 in phosphate buffer. The molecular weight of the reductase was determined to be 83,600 from sodium dodecyl sulfate gel electrophoresis with a proposed molecular structure: 22. Its absorption spectrum showed a maximum at 275 nm, a broad shoulder at 370 nm and a very small absorption maximum at 585 nm. No siroheme chromophore was isolated from this reductase. The enzyme could reduced the following substrates in preferential order: NH2OH> SeO 3 2- >NO 2 2- at rates 50% or less of its preferred substrate SO 3 2- . The proposed dissimilatory intermediates, S3O 6 2- or S2O 3 2- , were not utilized by this reductase while KCN inhibited its activity. Varying the substrate concentration [SO 3 2- ] from 1 to 2.5 mol affected the stoichiometry of the enzyme reaction by alteration of the ratio of H2 uptake to S2- formed from 2.5:1 to 3.1:1. The inducible sulfite reductase was found to be linked to ferredoxin which could be completely replaced by methyl viologen or partially by benzyl viologen. Some of the above-mentioned enzyme properties and physiological considerations indicated that it was a dissimilatory type sulfite reductase.Abbreviations SDS sodium dodecyl sulfate - BSA bovine serum albumin - LDH Lactate dehydrogenase  相似文献   

11.
Aspartate transaminase (AST) activity in the camel tick Hyalomma dromedarii was followed throughout embryogenesis. During purification of AST to homogeneity, ion exchange chromatography lead to four separate forms (termed I, II, III and IV). AST II with the highest specific activity was pure after chromatography on Sephacryl S-300. The molecular mass of AST II was 52KDa for the native enzyme, composed of one subunit of 50KDa. AST II had a Km value of 0.67mM for -ketoglutarate and 15.1mM for aspartate. AST II had a pH optimum of 7.5 with heat stability up to 50°C for 15min. The enzyme was activated by MnCl2, and inhibited by CaCl2, MgCl2, NiCl2, and ZnCl2.  相似文献   

12.
A microsomal vesicle fraction (GV) markedly enriched by the Golgi marker enzyme latent inosine diphosphatase (IDPase) has been isolated from photoautotrophic suspension-cell protoplasts ofChenopodium rubrum L. Addition of ATP creates a substantial pH gradient across the GV membrane as measured by accumulation of acridine orange. The GV showed a density of 1.14 g·cm-3 by equilibrium density centrifugation on sucrose gradients. Coincidence of acridine-orange accumulation and IDPase activity was confirmed on Percoll gradients. Formation of the pH gradient half-saturates at 0.3 mM MgATP, peaks at pH 7, and is competitively inhibited by ADP (k i0.1 mM), but not by Pi; it is hardly inhibited by orthovanadate, quickly dissipated by monensink 2=18 nM), nigericin (k 1/2=25 nM), and sluggishly by N-ethylmaleimide (k 1/235 M). Inhibition by KNO3 (k 1/26.7 mM) is incomplete (60%). Uridine 5-diphosphate (UDP)-glucose, UDP-galactose, but not UDP-mannose and the pertinent sugars, dissipate the ATP-generated pH gradient (k 1/210–20 mM UDP-glucose; optimum pH at 7.8). This UDP-glucose activity is accompanied by release of Pi, but not of glucose or sucrose. UDP-glucoseinduced Pi release from the GV saturates (k 1/2=1 mM UDP-glucose; optimum pH at 7) and is completely inhibited by the anion-channel blocker 4,4-diisothiocyano-2,2-stilbene disulfonic acid (DIDS;k 1/2=140 M). The GV incorporates UDP-[U-14C]glucose into an acid-labile, alkaline-stable macromolecular compound; this process is like-wise inhibited by DIDS. We propose a model including, inter alia, a UDP-glucose/uridine-5-monophosphate translocator and a phosphate-permeable anion channel to operate in Golgi vesicles ofChenopodium rubrum.Abbreviations AO acridine orange - DIDS 4,4-diisothiocyano-2,2-stilbene disulfonic acid - FCCP carbonyl cyanidep-trifluoromethyoxyphenyl hydrazone - GV Golgi-vesicle-enriched microsomal fraction - IDPase mosine diphosphatase  相似文献   

13.
The effects of trees and contamination on microbial metabolic activity, especially that of hydrocarbon degrading bacteria, were compared during phytoremediation to find which conditions increase diesel fuel removal. Diesel fuel utilisation, microbial extracellular enzyme activities and utilisation of Biolog ECO plate carbon sources by soil bacteria were determined during phytoremediation experiments consisting of two separate diesel applications. Diesel fuel removal after 28 days of second diesel application was 20–30% more than after the first application 1 year earlier. Soil microbiota utilised 26–31 of the 31 Biolog ECO plate carbon sources. Carbon source utilisation profiles indicated minor differences in microbiota in soil vegetated with pine compared to microbiota in soil vegetated with poplar. The potential maximum rates of aminopeptidase activity were 10–102 M AMC/h/g dry soil prior to and after second diesel application, except 14days after the second diesel addition, where the rates were at the scale of 103M AMC/h/g dry soil. The potential maximum rates of esterase activity were 103–104M MUF/h/g dry soil. The presence of plants did not influence the activity of esterases. The utilisation of diesel by soil bacteria in Biolog MT2 plate assay was higher in contaminated soil, especially when vegetated, than in uncontaminated soil, measured both as lag times and maximum specific utilisation rates. MT2 plate assay detected the biological response after diesel fuel addition better than general activity methods.  相似文献   

14.
Summary Intact cells of Thiobacillus denitrificans catalyzed the oxidation of thiosulfate, sulfide and sulfite with nitrate or oxygen as the terminal acceptor. The anaerobic oxidation of thiosulfate, sulfide and sulfite was sensitive to the inhibitors of the flavoprotein system. Under aerobic conditions the oxidation of sulfide and sulfite was sensitive to these inhibitors but the thiosulfate oxidation was unaffected. Cyanide and azide inhibited the aerobic and anaerobic respiration when thiosulfate, sulfide or sulfite served as electron donors. The oxidation of thiosulfate by cell-free preparations was mediated by cytochromes of c, a and o-types. The cell-free extracts also catalyzed the oxidation of NADH and succinate, involving flavoproteins and b, c, a and o-type cytochromes. In addition, a cytochrome oxidase sensitive to cyanide and azide was also present.Non-Standard Abbreviations TTFA Thenoyltrifluoroacetone - HQNO 2-heptyl-4-hydroxyquonoline N-oxide Aspirant van het Nationaal Fonds voor Wetenschappelijk Onderzoek (Belgian National Science Foundation).  相似文献   

15.
Cloning and characterization of an exoinulinase from Bacillus polymyxa   总被引:2,自引:0,他引:2  
A gene encoding an exoinulinase (inu) from Bacillus polymyxa MGL21 was cloned and sequenced. It is composed of 1455 nucleotides, encoding a protein (485 amino acids) with a molecular mass of 55522 Da. Inu was expressed in Escherichia coli and the His-tagged exoinulinase was purified. The purified enzyme hydrolyzed sucrose, levan and raffinose, in addition to inulin, with a sucrose/inulin ratio of 2. Inulinase activity was optimal at 35°C and pH 7, was completely inactivated by 1 mM Ag+ or Hg2+. The K m and V max values for inulin hydrolysis were 0.7 mM and 2500 M min–1 mg–1 protein. The enzyme acted on inulin via an exo-attack to produce fructose mainly.  相似文献   

16.
Methylaspartase (EC 4.3.1.2) was purified 20fold in 35% yield from Fusobacterium varium, an obligate anaerobe. The purification steps included heat treatment, fractional precipitation with ammonium sulfate and ethanol, gel filtration, and ion exchange chromatography on DEAESepharose. The enzyme is dimeric, consisting of two identical 46 kDa subunits, and requires Mg2+ (Km = 0.27 ± 0.01 mM) and K+ (Km = 3.3 ± 0.8 mM) for maximum activity. Methylaspartasecatalyzed addition of ammonia to mesaconate yielded two diastereomeric amino acids, identified by HPLC as (2S,3S)3methylaspartate (major product) and (2S,3R)3methylaspartate (minor product). Optimal activity for the deamination of (2S,3S)3methylaspartate (Km = 0.51 ± 0.04 mM) was observed at pH 9.7. The Nterminal protein sequence (30 residues) of the F. varium enzyme is 83% identical to the corresponding sequence of the clostridial enzyme.  相似文献   

17.
Anaerobically prepared cell-free extracts from Fusobacterium nucleatum contain 2-hydroxyglutaryl-CoA dehydratase with a specific activity of 20 nkat mg-1. The enzyme was purified 24-fold to a specific activity of 480 nkat mg-1 by anion exchange chromatography, gel filtration and chromatography on Blue-Sepharose. The activity of the purified enzyme was strictly dependent on the reductant Ti(III)citrate and stimulated 25-fold by 0.15 mM ATP and 5 mM MgCl2. ATP is hydrolysed to ADP during incubation with 2-hydroxyglutaryl-CoA dehydratase in the presence or absence of the substrate. The enzyme is extremely sensitive towards oxygen and is inhibited by 10 M chloramphenicol, 10 M 2,4-dinitrophenol or 0.15 mM hydroxylamine. The pure enzyme consists of three subunits (49 kDa), (39 kDa) and (24 kDa) in approximately equal amounts. In this respect the enzyme differs from the related 2-hydroxy-glutaryl-CoA dehydratase from Acidaminococcus fermentans and lactyl-CoA dehydratase from Clostridium propionicum both of which are composed of only two subunits with sizes comparable to those of and but require an additional protein for activity. The relative molecular mass of the native enzyme of about 100 kDa suggests a trimeric -structure. The homogeneous enzyme contains riboflavin (0.5 mol/112 kDa), iron and sulfur (3.5 mol/112 kDa each). Polyclonal antibodies directed against the 2-hydroxyglutaryl-CoA dehydratase from A. fermentans did not crossreact with cell free extracts or purified dehydratase from F. nucleatum. A comparison of the N-terminal amino acid sequences of the dehydratase subunits from A. fermentans and F. nucleatum, however, showed some similarities in the -subunits.Non-standard abbreviations DTT dithiothreitol - PAGE polyaccrylamide gel electrophoresis - VIS visible  相似文献   

18.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

19.
Summary We have previously reported that ferricyanide reductase activity in human erythrocytes depended on glycolysis and could be modulated by several compounds including oxidants and hormones like insulin. Insulin could activate glycolysis, probably as a consequence of tyrosine phosphorylation of protein band 3, implicating phosphorylation reactions as an important signal for activation of the reductase by insulin. Reversible phosphorylation of cellular proteins is also believed to play a key role in the action of insulin. Cytosolic acid phosphatase activity has been found in human erythrocytes. To further extend initial reports, we studied the effect of modulators on the cytosolic erythrocyte acid phosphatase. Mild oxidants like ferricyanide (1 mM), vanadate (1 mM), Mn2+ (0.5 and 1 mM), and phenylarsine oxide (10 and 100 M) inhibited the phosphatase activity. Similarly, insulin at concentrations that stimulate ferricyanide reduction (500, 1000 IU/ml) inhibited the activity of the phosphatase enzyme. The overall results indicated that oxidants are able to inhibit the acid phosphatase and stimulate the redox enzyme. In addition, a significant negative correlation (r = –0.400; P = 0.006) was observed between phosphatase and reductase activities. The observations discussed here, together with previous ones, emphasize that a close association between reductase and phosphatase enzymes may exist and also suggest a role for redox reactions in tyrosine phosphorylation/dephosphorylation-mediated signal transduction pathways.  相似文献   

20.
Parasitological examination of European otter originating from Extremadura, Spain revealed the presence of a new isosporan species. Oöcysts of Isospora lutrae n. sp. are spherical to subspherical, 31.2 (27.5–32) × 29.6 (28–31) m and have a smooth wall c. 1 m thick. Sporocysts are ellipsoidal, 18.2 (17–19) × 14.4 (14–16) m and lack Stieda and substieda bodies. A spherical sporocyst residuum is present, consisting of granules scattered among the sporozoites. Sporozoites are spindle-shaped, 12.4 × 2.5 m and have anterior and posterior refractile bodies. Based on its unique morphologic structure and host, I. lutrae is considered to be new.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号