首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intimins are members of a family of bacterial adhesins from pathogenic Escherichia coli which specifically interact with diverse eukaryotic cell surface receptors. The EaeA intimin from enterohemorrhagic E. coli O157:H7 contains an N-terminal transporter domain, which resides in the bacterial outer membrane and promotes the translocation of four C-terminally attached passenger domains across the bacterial cell envelope. We investigated whether truncated EaeA intimin lacking two carboxy-terminal domains could be used as a translocator for heterologous passenger proteins. We found that a variant of the trypsin inhibitor Ecballium elaterium trypsin inhibitor II (EETI-II), interleukin 4, and the Bence-Jones protein REI(v) were displayed on the surface of E. coli K-12 via fusion to truncated intimin. Fusion protein net accumulation in the outer membrane could be regulated over a broad range by varying the cellular amount of suppressor tRNA that is necessary for translational readthrough at an amber codon residing within the truncated eaeA gene. Intimin-mediated adhesion of the bacterial cells to eukaryotic target cells could be mimicked by surface display of a short fibrinogen receptor binding peptide containing an arginine-glycine-aspartic acid sequence motif, which promoted binding of E. coli K-12 to human platelets. Cells displaying a particular epitope sequence fused to truncated intimin could be enriched 200,000-fold by immunofluorescence staining and fluorescence-activated cell sorting in three sorting rounds. These results demonstrate that truncated intimin can be used as an anchor protein that mediates the translocation of various passenger proteins through the cytoplasmic and outer membranes of E. coli and their exposure on the cell surface. Intimin display may prove a useful tool for future protein translocation studies with interesting biological and biotechnological ramifications.  相似文献   

2.
Autotransporter proteins comprise a large family of virulence factors that consist of a β-barrel translocation unit and an extracellular effector or passenger domain. The β-barrel anchors the protein to the outer membrane of Gram-negative bacteria and facilitates the transport of the passenger domain onto the cell surface. By inserting an epitope tag into the N terminus of the passenger domain of the inverse autotransporter intimin, we generated a mutant defective in autotransport. Using this stalled mutant, we could show that (i) at the time point of stalling, the β-barrel appears folded; (ii) the stalled autotransporter is associated with BamA and SurA; (iii) the stalled intimin is decorated with large amounts of SurA; (iv) the stalled autotransporter is not degraded by periplasmic proteases; and (v) inverse autotransporter passenger domains are translocated by a hairpin mechanism. Our results suggest a function for the BAM complex not only in insertion and folding of the β-barrel but also for passenger translocation.  相似文献   

3.
Autotransporters are single polypeptides consisting of an outer membrane translocation domain mediating the translocation of a passenger domain. The periplasmic folding state of the passenger domain is controversial. By comparisons of passenger domains differing in their folding properties, our results suggest that periplasmic folding of passenger domains interferes with translocation.  相似文献   

4.
Members of the protein family of immunoglobulin A1 protease-like autotransporters comprise multidomain precursors consisting of a C-terminal autotransporter domain that promotes the translocation of N-terminally attached passenger domains across the cell envelopes of gram-negative bacteria. Several autotransporter domains have recently been shown to efficiently promote the export of heterologous passenger domains, opening up an effective tool for surface display of heterologous proteins. Here we report on the autotransporter domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I), which was genetically fused to the C terminus of the periplasmic enzyme beta-lactamase, leading to efficient expression of the fusion protein in E. coli. The beta-lactamase moiety of the fusion protein was presented on the bacterial surface in a stable manner, and the surface-located beta-lactamase was shown to be enzymatically active. Enzymatic activity was completely removed by protease treatment, indicating that surface display of beta-lactamase was almost quantitative. The periplasmic domain of the outer membrane protein OmpA was not affected by externally added proteases, demonstrating that the outer membranes of E. coli cells expressing the beta-lactamase AIDA-I fusion protein remained physiologically intact.  相似文献   

5.
Autotransporter (AT) proteins are a broad class of virulence proteins from Gram-negative bacterial pathogens that require their own C-terminal transmembrane domain to translocate their N-terminal passenger across the bacterial outer membrane (OM). But given the unavailability of ATP or a proton gradient across the OM, it is unknown what energy source(s) drives this process. Here we used a combination of computational and experimental approaches to quantitatively compare proposed AT OM translocation mechanisms. We show directly for the first time that when translocation was blocked an AT passenger remained unfolded in the periplasm. We demonstrate that AT secretion is a kinetically controlled, non-equilibrium process coupled to folding of the passenger and propose a model connecting passenger conformation to secretion kinetics. These results reconcile seemingly contradictory reports regarding the importance of passenger folding as a driving force for OM translocation but also reveal that another energy source is required to initiate translocation.  相似文献   

6.
Autotransporters are bacterial virulence factors that share a common mechanism by which they are transported to the cell surface. They consist of an N-terminal passenger domain and a C-terminal β-barrel, which has been implicated in translocation of the passenger across the outer membrane (OM). The mechanism of passenger translocation and folding is still unclear but involves a conserved region at the C terminus of the passenger domain, the so-called autochaperone domain. This domain functions in the stepwise translocation process and in the folding of the passenger domain after translocation. In the autotransporter hemoglobin protease (Hbp), the autochaperone domain consists of the last rung of the β-helix and a capping domain. To examine the role of this region, we have mutated several conserved aromatic residues that are oriented toward the core of the β-helix. We found that non-conservative mutations affected secretion with Trp(1015) in the cap region as the most critical residue. Substitution at this position yielded a DegP-sensitive intermediate that is located at the periplasmic side of the OM. Further analysis revealed that Trp(1015) is most likely required for initiation of processive folding of the β-helix at the cell surface, which drives sequential translocation of the Hbp passenger across the OM.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) attaches intimately to mammalian cells via a bacterial outer membrane adhesion molecule, intimin, and its receptor in the host cell membrane, Tir. Tir is a bacterial protein translocated into the host cell membrane and tyrosine phosphorylated after insertion. Tir–intimin binding induces organized actin polymerization beneath the adherent bacteria, resulting in the formation of pedestal-like structures. A series of Tir deletion derivatives were constructed to analyse which Tir domains are involved in intimin binding. We have localized the intimin-binding domain (IBD) of Tir using a yeast two-hybrid system and a gel-overlay approach to a region of 109 amino acids that is predicted to be exposed on the surface of the plasma membrane. A truncated Tir protein lacking this domain was translocated to the host cell membrane and tyrosine phosphorylated, but failed to bind intimin or to induce either actin polymerization or Tir accumulation beneath the bacteria. These results indicate that only a small region of Tir is needed to bind intimin and support the predicted topology for Tir, with both N- and C-terminal regions in the mammalian cell cytosol. They also confirm that Tir–intimin interactions are needed for cytoskeletal organization. We have also identified N-terminal regions involved in Tir stability and Tir secretion to the media.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) induce gross cytoskeletal rearrangement within epithelial cells, immediately beneath the attached bacterium. The C-terminal 280 amino acid residues of intimin (Int280; 30.1 kDa), a bacterial cell-adhesion molecule, mediate the intimate bacterial host-cell interaction. Recently, interest in this process has been stimulated by the discovery that the bacterial intimin receptor protein (Tir) is translocated into the host cell membrane, phosphorylated, and after binding intimin triggers the intimate attachment. Using multidimensional nuclear magnetic resonance (NMR) and combining perdeuteration with site-specific protonation of methyl groups, we have determined the global fold of Int280. This represents one of the largest, non-oligomeric protein structures to be determined by NMR that has not been previously resolved by X-ray crystallography. Int280 comprises three domains; two immunoglobulin-like domains and a C-type lectin-like module, which define a new family of bacterial adhesion molecules. These findings also imply that carbohydrate recognition may be important in intimin-mediated cell adhesion.  相似文献   

9.
Autotransporter secretion represents a unique mechanism that Gram-negative bacteria employ to deliver proteins to their cell surface. BrkA is a Bordetella pertussis autotransporter protein that mediates serum resistance and contributes to adherence of the bacterium to host cells. BrkA is a 103 kDa protein that is cleaved to form a 73 kDa alpha-domain and a 30 kDa beta domain. The alpha domain, also referred to as the passenger domain, is responsible for the effector functions of the protein, whereas the beta domain serves as a transporter. In an effort to characterize BrkA secretion, we have shown that BrkA has a 42 amino acid signal peptide for transit across the cytoplasmic membrane, and a translocation unit made up of a short linker region fused to the beta-domain to ferry the passenger domain to the bacterial surface through a channel formed by the beta-domain. In this report, we provide genetic, biochemical and structural evidence demonstrating that a region within the BrkA passenger (Glu601-Ala692) is necessary for folding the passenger. This region is not required for surface display in the outer membrane protease OmpT-deficient Escherichia coli strain UT5600. However, a BrkA mutant protein bearing a deletion in this region is susceptible to digestion when expressed in E. coli strains expressing OmpT suggesting that the region is required to maintain a stable structure. The instability of the deletion mutant can be rescued by surface expressing Glu601-Ala692in trans suggesting that this region is acting as an intramolecular chaperone to effect folding of the passenger concurrent with or following translocation across the outer membrane.  相似文献   

10.
Many virulence factors secreted by pathogenic Gram-negative bacteria belong to the autotransporter (AT) family. ATs consist of a passenger domain, which is the actual secreted moiety, and a beta-domain that facilitates the transfer of the passenger domain across the outer membrane. Here, we analysed folding and translocation of the AT passenger, using Escherichia coli haemoglobin protease (Hbp) as a model protein. Dual cysteine mutagenesis, instigated by the unique crystal structure of the Hbp passenger, resulted in intramolecular disulphide bond formation dependent on the periplasmic enzyme DsbA. A small loop tied off by a disulphide bond did not interfere with secretion of Hbp. In contrast, a bond between different domains of the Hbp passenger completely blocked secretion resulting in degradation by the periplasmic protease DegP. In the absence of DegP, a translocation intermediate accumulated in the outer membrane. A similar jammed intermediate was formed upon insertion of a calmodulin folding moiety into Hbp. The data suggest that Hbp can fold in the periplasm but must retain a certain degree of flexibility and/or modest width to allow translocation across the outer membrane.  相似文献   

11.
The immunoglobulin A protease family of secreted proteins are derived from self-translocating polyprotein precursors which contain C-terminal domains promoting the translocation of the N-terminally attached passenger domains across gram-negative bacterial outer membranes. Computer predictions identified the C-terminal domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I) as a member of the autotransporter family. A model of the beta-barrel structure, proposed to be responsible for outer membrane translocation, served as a basis for the construction of fusion proteins containing heterologous passengers. Autotransporter-mediated surface display (autodisplay) was investigated for the cholera toxin B subunit and the peptide antigen tag PEYFK. Up to 5% of total cellular protein was detectable in the outer membrane as passenger autotransporter fusion protein synthesized under control of the constitutive P(TK) promoter. Efficient presentation of the passenger domains was demonstrated in the outer membrane protease T-deficient (ompT) strain E. coli UT5600 and the ompT dsbA double mutant JK321. Surface exposure was ascertained by enzyme-linked immunosorbent assay, immunofluorescence microscopy, and immunogold electron microscopy using antisera specific for the passenger domains. In strain UT2300 (ompT+), the passenger domains were released from the cell surface by the OmpT protease at a novel specific cleavage site, R / V. Autodisplay represents a useful tool for future protein translocation studies with interesting biotechnological possibilities.  相似文献   

12.
Intimin is an outer membrane adhesion molecule involved in bacterial adhesion to intestinal epithelium by several human and animal enteric pathogens, including enteropathogenic and enterohaemorrhagic Escherichia coli and Citrobacter rodentium. Intimin binds to the translocated intimin receptor, Tir, which is delivered to the plasma membrane of the host cell by a type III protein translocation system. Intimin is also implicated in binding to a host cell-encoded intimin receptor (Hir). The receptor-binding activity of intimin resides within the carboxy terminus 280 amino acids (Int280) of the polypeptide. Structural analysis of this region revealed two immunoglobulin-like domains, the second of which forms a number of contacts with the distal C-type lectin-like module. Specific orientation differences at this inter-domain boundary, which consists of several tyrosine residues, were detected between the crystal and solution structures. In this study, we determined the influence of site-directed mutagenesis of each of four tyrosine residues on intimin-Tir interactions and on intimin-mediated intimate attachment. The mutant intimins were also studied using a variety of in vitro and in vivo infection models. The results show that three of the four Tyr, although not essential for A/E lesion formation in vitro, are required for efficient colonisation of the mouse host following oral challenge.  相似文献   

13.
In recent years, structural studies have identified a number of bacterial, viral, and eukaryotic adhesive proteins that have a trimeric architecture. The prototype examples in bacteria are the Haemophilus influenzae Hia adhesin and the Yersinia enterocolitica YadA adhesin. Both Hia and YadA are members of the trimeric-autotransporter subfamily and are characterized by an internal passenger domain that harbors adhesive activity and a short C-terminal translocator domain that inserts into the outer membrane and facilitates delivery of the passenger domain to the bacterial surface. In this study, we examined the relationship between trimerization of the Hia and YadA passenger domains and the capacity for adhesive activity. We found that subunit-subunit interactions and stable trimerization are essential for native folding and stability and ultimately for full-level adhesive activity. These results raise the possibility that disruption of the trimeric architecture of trimeric autotransporters, and possibly other trimeric adhesins, may be an effective strategy to eliminate adhesive activity.  相似文献   

14.
T Klauser  J Pohlner    T F Meyer 《The EMBO journal》1992,11(6):2327-2335
The C-terminal domain (Iga beta) of the Neisseria IgA protease precursor is involved in the transport of covalently attached proteins across the outer membrane of Gram-negative bacteria. We investigated outer membrane transport in Escherichia coli using fusion proteins consisting of an N-terminal signal sequence for inner membrane transport, the Vibrio cholerae toxin B subunit (CtxB) as a passenger and Iga beta. The process probably involves two distinct steps: (i) integration of Iga beta into the outer membrane and (ii) translocation of the passenger across the membrane. The outer membrane integrated part of Iga beta is the C-terminal 30 kDa core, which serves as a translocator for both the passenger and the linking region situated between the passenger and Iga beta core. The completeness of the translocation is demonstrated by the extracellular release of the passenger protein owing to the action of the E. coli outer membrane OmpT protease. Translocation of the CtxB moiety occurs efficiently under conditions preventing intramolecular disulphide bond formation. In contrast, if disulphide bond formation in the periplasm proceeds, then translocation halts after the export of the linking region. In this situation transmembrane intermediates are generated which give rise to characteristic fragments resulting from rapid proteolytic degradation of the periplasmically trapped portion. Based on the identification of translocation intermediates we propose that the polypeptide chain of the passenger passes in a linear fashion across the bacterial outer membrane.  相似文献   

15.
Protein secretion through autotransporter and two-partner pathways   总被引:1,自引:0,他引:1  
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.  相似文献   

16.
Crystal Structure of a Full-Length Autotransporter   总被引:1,自引:0,他引:1  
The autotransporter (AT) secretion mechanism is the most common mechanism for the secretion of virulence factors across the outer membrane (OM) from pathogenic Gram-negative bacteria. In addition, ATs have attracted biotechnological and biomedical interest for protein display on bacterial cell surfaces. Despite their importance, the mechanism by which passenger domains of ATs pass the OM is still unclear. The classical view is that the β-barrel domain provides the conduit through which the unfolded passenger moves, with the energy provided by vectorial folding of the β-strand-rich passenger on the extracellular side of the OM. We present here the first structure of a full-length AT, the esterase EstA from Pseudomonas aeruginosa, at a resolution of 2.5 Å. EstA has a relatively narrow, 12-stranded β-barrel that is covalently attached to the passenger domain via a long, curved helix that occupies the lumen of the β-barrel. The passenger has a structure that is dramatically different from that of other known passengers, with a globular fold that is dominated by α-helices and loops. The arrangement of secondary-structure elements suggests that the passenger can fold sequentially, providing the driving force for passenger translocation. The esterase active-site residues are located at the apical surface of the passenger, at the entrance of a large hydrophobic pocket that contains a bound detergent molecule that likely mimics substrate. The EstA structure provides insight into AT mechanism and will facilitate the design of fusion proteins for cell surface display.  相似文献   

17.
Autotransporters (ATs) of Gram-negative bacteria contain an N-proximal passenger domain that is transported to the extracellular milieu and a C-terminal β-domain that inserts into the outer membrane (OM) in a β-barrel conformation. This β-domain facilitates translocation of the passenger domain across the OM and has long been considered to be the translocation pore. However, available crystal structures of β-domains show that the β-barrel pore is too narrow for the observed transport of folded elements within the passenger domains. ATs have recently been shown to interact with the β-barrel assembly machinery. These findings questioned a direct involvement of the β-domain in passenger translocation and suggested that it may only target the passenger to the β-barrel assembly machinery pore. To address the function of the β-domain in more detail, we have replaced the β-domain of the Escherichia coli AT hemoglobin protease by β-domains originating from other OM proteins. Furthermore, we have modified the diameter of the β-domain pore. The mutant proteins were analyzed for their capacity to insert into the OM and for surface display of the passenger. Our results show that efficient passenger secretion requires a specific β-domain that not only functions as a targeting device but also is directly involved in the translocation of the passenger to the cell surface.  相似文献   

18.
Autotransporters are a superfamily of virulence factors typified by a channel-forming C terminus that facilitates translocation of the functional N-terminal passenger domain across the outer membrane of Gram-negative bacteria. This final step in the secretion of autotransporters requires a translocation-competent conformation for the passenger domain that differs markedly from the structure of the fully folded secreted protein. The nature of the translocation-competent conformation remains controversial, in particular whether the passenger domain can adopt secondary structural motifs, such as disulfide-bonded segments, while maintaining a secretion-competent state. Here, we used the endogenous and closely spaced cysteine residues of the plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli to investigate the effect of disulfide bond-induced folding on translocation of an autotransporter passenger domain. We reveal that rigid structural elements within disulfide-bonded segments are resistant to autotransporter-mediated secretion. We define the size limit of disulfide-bonded segments tolerated by the autotransporter system demonstrating that, when present, cysteine pairs are intrinsically closely spaced to prevent congestion of the translocator pore by large disulfide-bonded regions. These latter data strongly support the hairpin mode of autotransporter biogenesis.  相似文献   

19.
Gram-negative bacterial autotransporter proteins are a growing group of virulence factors that are characterized by their ability to cross the outer membrane without the help of accessory proteins. A conserved C-terminal beta-domain is critical for targeting of autotransporters to the outer membrane and for translocation of the N-terminal "passenger" domain to the bacterial surface. We have demonstrated previously that the Haemophilus influenzae Hia adhesin belongs to the autotransporter family, with translocator activity residing in the C-terminal 319 residues. To gain further insight into the mechanism of autotransporter protein translocation, we performed a structure-function analysis on Hia. In initial experiments, we generated a series of in-frame deletions and a set of chimeric proteins containing varying regions of the Hia C terminus fused to a heterologous passenger domain and discovered that the final 76 residues of Hia are both necessary and sufficient for translocation. Analysis by flow cytometry revealed that the region N-terminal to this shortened translocator domain is surface localized, further suggesting that this region is not involved in beta-barrel formation or in translocation of the passenger domain. Western analysis demonstrated that the translocation-competent regions of the C terminus migrated at masses consistent with trimers, suggesting that the Hia C terminus oligomerizes. Furthermore, fusion proteins containing a heterologous passenger domain demonstrated that similarly small C-terminal regions of Yersinia sp. YadA and Neisseria meningitidis NhhA are translocation-competent. These data provide experimental support for a unique subclass of autotransporters characterized by a short trimeric translocator domain.  相似文献   

20.
Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, employ a type III secretion system to deliver effector proteins across the bacterial cell. In EPEC, four proteins are known to be exported by a type III secretion system_EspA, EspB and EspD required for subversion of host cell signal transduction pathways and a translocated intimin receptor (Tir) protein (formerly Hp90) which is tyrosine-phosphorylated following transfer to the host cell to become a receptor for intimin-mediated intimate attachment and 'attaching and effacing' (A/E) lesion formation. The structural basis for protein translocation has yet to be fully elucidated for any type III secretion system. Here, we describe a novel EspA-containing filamentous organelle that is present on the bacterial surface during the early stage of A/E lesion formation, forms a physical bridge between the bacterium and the infected eukaryotic cell surface and is required for the translocation of EspB into infected epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号