共查询到20条相似文献,搜索用时 0 毫秒
1.
We argue that the term “relative risk” should not be used as a synonym for “hazard ratio” and encourage to use the probabilistic index as an alternative effect measure for Cox regression. The probabilistic index is the probability that the event time of an exposed or treated subject exceeds the event time of an unexposed or untreated subject conditional on the other covariates. It arises as a well known and simple transformation of the hazard ratio and nicely reveals the interpretational limitations. We demonstrate how the probabilistic index can be obtained using the R-package Publish. 相似文献
2.
This article develops omnibus tests for comparing cause-specific hazard rates and cumulative incidence functions at specified covariate levels. Confidence bands for the difference and the ratio of two conditional cumulative incidence functions are also constructed. The omnibus test is formulated in terms of a test process given by a weighted difference of estimates of cumulative cause-specific hazard rates under Cox proportional hazards models. A simulation procedure is devised for sampling from the null distribution of the test process, leading to graphical and numerical technques for detecting significant differences in the risks. The approach is applied to a cohort study of type-specific HIV infection rates. 相似文献
3.
We propose an alternative representation of the cause-specificcross hazard ratio for bivariate competing risks data. The representationleads to a simple plug-in estimator, unlike an existing ad hocprocedure. The large sample properties of the resulting inferencesare established. Simulations and a real data example demonstratethat the proposed methodology may substantially reduce the computationalburden of the existing procedure, while maintaining similarefficiency properties. 相似文献
4.
Jacobo de Uña-Álvarez 《Biometrical journal. Biometrische Zeitschrift》2020,62(3):852-867
Registry data typically report incident cases within a certain calendar time interval. Such interval sampling induces double truncation on the incidence times, which may result in an observational bias. In this paper, we introduce nonparametric estimation for the cumulative incidences of competing risks when the incidence time is doubly truncated. Two different estimators are proposed depending on whether the truncation limits are independent of the competing events or not. The asymptotic properties of the estimators are established, and their finite sample performance is investigated through simulations. For illustration purposes, the estimators are applied to childhood cancer registry data, where the target population is peculiarly defined conditional on future cancer development. Then, in our application, the cumulative incidences inform on the distribution by age of the different types of cancer. 相似文献
5.
6.
7.
Zhao and Tsiatis (1997) consider the problem of estimation of the distribution of the quality-adjusted lifetime when the chronological survival time is subject to right censoring. The quality-adjusted lifetime is typically defined as a weighted sum of the times spent in certain states up until death or some other failure time. They propose an estimator and establish the relevant asymptotics under the assumption of independent censoring. In this paper we extend the data structure with a covariate process observed until the end of follow-up and identify the optimal estimation problem. Because of the curse of dimensionality, no globally efficient nonparametric estimators, which have a good practical performance at moderate sample sizes, exist. Given a correctly specified model for the hazard of censoring conditional on the observed quality-of-life and covariate processes, we propose a closed-form one-step estimator of the distribution of the quality-adjusted lifetime whose asymptotic variance attains the efficiency bound if we can correctly specify a lower-dimensional working model for the conditional distribution of quality-adjusted lifetime given the observed quality-of-life and covariate processes. The estimator remains consistent and asymptotically normal even if this latter submodel is misspecified. The practical performance of the estimators is illustrated with a simulation study. We also extend our proposed one-step estimator to the case where treatment assignment is confounded by observed risk factors so that this estimator can be used to test a treatment effect in an observational study. 相似文献
8.
9.
10.
11.
Yovaninna Alarcn‐Soto Klaus Langohr Csaba Fehr Felipe García Guadalupe Gmez 《Biometrical journal. Biometrische Zeitschrift》2019,61(2):299-318
We present a method to fit a mixed effects Cox model with interval‐censored data. Our proposal is based on a multiple imputation approach that uses the truncated Weibull distribution to replace the interval‐censored data by imputed survival times and then uses established mixed effects Cox methods for right‐censored data. Interval‐censored data were encountered in a database corresponding to a recompilation of retrospective data from eight analytical treatment interruption (ATI) studies in 158 human immunodeficiency virus (HIV) positive combination antiretroviral treatment (cART) suppressed individuals. The main variable of interest is the time to viral rebound, which is defined as the increase of serum viral load (VL) to detectable levels in a patient with previously undetectable VL, as a consequence of the interruption of cART. Another aspect of interest of the analysis is to consider the fact that the data come from different studies based on different grounds and that we have several assessments on the same patient. In order to handle this extra variability, we frame the problem into a mixed effects Cox model that considers a random intercept per subject as well as correlated random intercept and slope for pre‐cART VL per study. Our procedure has been implemented in R using two packages: truncdist and coxme , and can be applied to any data set that presents both interval‐censored survival times and a grouped data structure that could be treated as a random effect in a regression model. The properties of the parameter estimators obtained with our proposed method are addressed through a simulation study. 相似文献
12.
Rok Blagus 《Biometrical journal. Biometrische Zeitschrift》2023,65(4):2200133
We study bias-reduced estimators of exponentially transformed parameters in general linear models (GLMs) and show how they can be used to obtain bias-reduced conditional (or unconditional) odds ratios in matched case-control studies. Two options are considered and compared: the explicit approach and the implicit approach. The implicit approach is based on the modified score function where bias-reduced estimates are obtained by using iterative procedures to solve the modified score equations. The explicit approach is shown to be a one-step approximation of this iterative procedure. To apply these approaches for the conditional analysis of matched case-control studies, with potentially unmatched confounding and with several exposures, we utilize the relation between the conditional likelihood and the likelihood of the unconditional logit binomial GLM for matched pairs and Cox partial likelihood for matched sets with appropriately setup data. The properties of the estimators are evaluated by using a large Monte Carlo simulation study and an illustration of a real dataset is shown. Researchers reporting the results on the exponentiated scale should use bias-reduced estimators since otherwise the effects can be under or overestimated, where the magnitude of the bias is especially large in studies with smaller sample sizes. 相似文献
13.
14.
In medical studies, it is often of scientific interest to evaluate the treatment effect via the ratio of cumulative hazards, especially when those hazards may be nonproportional. To deal with nonproportionality in the Cox regression model, investigators usually assume that the treatment effect has some functional form. However, to do so may create a model misspecification problem because it is generally difficult to justify the specific parametric form chosen for the treatment effect. In this article, we employ empirical likelihood (EL) to develop a nonparametric estimator of the cumulative hazard ratio with covariate adjustment under two nonproportional hazard models, one that is stratified, as well as a less restrictive framework involving group-specific treatment adjustment. The asymptotic properties of the EL ratio statistic are derived in each situation and the finite-sample properties of EL-based estimators are assessed via simulation studies. Simultaneous confidence bands for all values of the adjusted cumulative hazard ratio in a fixed interval of interest are also developed. The proposed methods are illustrated using two different datasets concerning the survival experience of patients with non-Hodgkin's lymphoma or ovarian cancer. 相似文献
15.
Many research questions involve time-to-event outcomes that can be prevented from occurring due to competing events. In these settings, we must be careful about the causal interpretation of classical statistical estimands. In particular, estimands on the hazard scale, such as ratios of cause-specific or subdistribution hazards, are fundamentally hard to interpret causally. Estimands on the risk scale, such as contrasts of cumulative incidence functions, do have a clear causal interpretation, but they only capture the total effect of the treatment on the event of interest; that is, effects both through and outside of the competing event. To disentangle causal treatment effects on the event of interest and competing events, the separable direct and indirect effects were recently introduced. Here we provide new results on the estimation of direct and indirect separable effects in continuous time. In particular, we derive the nonparametric influence function in continuous time and use it to construct an estimator that has certain robustness properties. We also propose a simple estimator based on semiparametric models for the two cause-specific hazard functions. We describe the asymptotic properties of these estimators and present results from simulation studies, suggesting that the estimators behave satisfactorily in finite samples. Finally, we reanalyze the prostate cancer trial from Stensrud et al. (2020). 相似文献
16.
17.
18.
Yayuan Zhu Xuelin Huang Liang Li 《Biometrical journal. Biometrische Zeitschrift》2020,62(6):1371-1393
In clinical research and practice, landmark models are commonly used to predict the risk of an adverse future event, using patients' longitudinal biomarker data as predictors. However, these data are often observable only at intermittent visits, making their measurement times irregularly spaced and unsynchronized across different subjects. This poses challenges to conducting dynamic prediction at any post-baseline time. A simple solution is the last-value-carry-forward method, but this may result in bias for the risk model estimation and prediction. Another option is to jointly model the longitudinal and survival processes with a shared random effects model. However, when dealing with multiple biomarkers, this approach often results in high-dimensional integrals without a closed-form solution, and thus the computational burden limits its software development and practical use. In this article, we propose to process the longitudinal data by functional principal component analysis techniques, and then use the processed information as predictors in a class of flexible linear transformation models to predict the distribution of residual time-to-event occurrence. The measurement schemes for multiple biomarkers are allowed to be different within subject and across subjects. Dynamic prediction can be performed in a real-time fashion. The advantages of our proposed method are demonstrated by simulation studies. We apply our approach to the African American Study of Kidney Disease and Hypertension, predicting patients' risk of kidney failure or death by using four important longitudinal biomarkers for renal functions. 相似文献
19.
Latent class analysis is an intuitive tool to characterize disease phenotype heterogeneity. With data more frequently collected on multiple phenotypes in chronic disease studies, it is of rising interest to investigate how the latent classes embedded in one phenotype are related to another phenotype. Motivated by a cohort with mild cognitive impairment (MCI) from the Uniform Data Set (UDS), we propose and study a time-dependent structural model to evaluate the association between latent classes and competing risk outcomes that are subject to missing failure types. We develop a two-step estimation procedure which circumvents latent class membership assignment and is rigorously justified in terms of accounting for the uncertainty in classifying latent classes. The new method also properly addresses the realistic complications for competing risks outcomes, including random censoring and missing failure types. The asymptotic properties of the resulting estimator are established. Given that the standard bootstrapping inference is not feasible in the current problem setting, we develop analytical inference procedures, which are easy to implement. Our simulation studies demonstrate the advantages of the proposed method over benchmark approaches. We present an application to the MCI data from UDS, which uncovers a detailed picture of the neuropathological relevance of the baseline MCI subgroups. 相似文献