首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the fractions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in two laboratory-scale reactors were investigated using 16S rRNA probe hybridizations. The reactors were operated in intermittent aeration mode and different aeration cycles to treat anaerobically digested swine wastewater with ammonia concentrations up to 175 mg NH(3)-N/L. High ammonia removals (>98.8%) were achieved even with increased nitrogen loads and lower aeration: non-aeration time ratios of 1h:3h. Nitrosomonas/Nitrosococcus mobilis were the dominant ammonia-oxidizing bacteria in the reactors. Nitrospira-like organisms were the dominant nitrite-oxidizing bacteria during most of the investigation, but were occasionally outcompeted by Nitrobacter. High levels of nitrifiers were measured in the biomass of both reactors, and ammonia-oxidizing bacteria and nitrite-oxidizing bacterial levels adjusted to changing aeration: non-aeration time ratios. Theoretical ammonia-oxidizer fractions, determined by a mathematical model, were comparable to the measured values, although the measured biomass fractions were different at each stage while the theoretical values remained approximately constant. Stable ammonia removals and no nitrite accumulation were observed even when rRNA levels of ammonia oxidizers and nitrite-oxidizers reached a minimum of 7.2% and 8.6% of total rRNA, respectively. Stable nitrogen removal performance at an aeration: non-aeration ratio of 1h:3h suggests the possibility of significant savings in operational costs.  相似文献   

2.
Miscanthus x giganteus is a tall perennial grass whose suitability as an energy crop is presently being appraised. There is very little information on the effect of pretreatment and enzymatic saccharification of Miscanthus to produce fermentable sugars. This paper reports sugar yields during enzymatic hydrolysis from ammonia fiber expansion (AFEX) pretreated Miscanthus. Pretreatment conditions including temperature, moisture, ammonia loading, residence time, and enzyme loadings are varied to maximize hydrolysis yields. In addition, further treatments such as soaking the biomass prior to AFEX as well as washing the pretreated material were also attempted to improve sugar yields. The optimal AFEX conditions determined were 160 degrees C, 2:1 (w/w) ammonia to biomass loading, 233% moisture (dry weight basis), and 5 min reaction time for water-soaked Miscanthus. Approximately 96% glucan and 81% xylan conversions were achieved after 168 h enzymatic hydrolysis at 1% glucan loading using 15 FPU/(g of glucan) of cellulase and 64 p-NPGU/(g of glucan) of beta-glucosidase along with xylanase and tween-80 supplementation. A mass balance for the AFEX pretreatment and enzymatic hydrolysis process is presented.  相似文献   

3.
Thiobacillus ferrooxidans was used in fixed-film bioreactors to oxidize ferrous sulfate to ferric sulfate. Glass beads, ion-exchange resin, and activated-carbon particles were tested as support matrix materials. Activated carbon was tested in both a packed-bed bioreactor and a fluidized-bed bioreactor; the other matrix materials were used in packed-bed reactors. Activated carbon displayed the most suitable characteristics for use as a support matrix of T. ferrooxidans fixed-film formation. The reactors were operated within a pH range of 1.35 to 1.5, which effectively reduced the amount of ferric iron precipitation and eliminated diffusion control of mass transfer due to precipitation. The activated-carbon packed-bed reactor displayed the most favorable biomass holdup and kinetic performance related to ferrous sulfate oxidation. The fastest kinetic performance achieved with the activated-carbon packed-bed bioreactor was 78 g of Fe oxidized per liter per h (1,400 mmol of Fe oxidized per liter per h) at a true dilution rate of 40/h, which represents a hydraulic retention time of 1.5 min.  相似文献   

4.
A two-stage upflow packed-bed (reactors in series) system was used for the treatment of dairy wastewater. Nylon pads were used as supporting media for the biomass. This investigation aimed at the determination of various kinetic constants for substrate, biomass and biogas based on various models. The maximum loadings that could be applied to reactor I and reactor II were 14·29 and 5·0 kg of chemical oxygen demand (COD) per m3 per day, respectively. The maximum COD removal efficiencies at various loading rates were in the ranges of 93·8–98·5% and 72·5–84% for the two reactor systems, respectively. The combined biogas yield was between 0·196 and 0·386 m3 gas/kg CODa.  相似文献   

5.
The study investigated methane production from dehydrated waste-activated sludge (DWAS) with approximately 80% water content under thermophilic conditions. The repeated batch-wise treatment of DWAS using methanogenic sludge unacclimated to high concentrations of ammonia, increased the ammonia production up to 7,600 mg N per kilogram total wet sludge of total ammonia concentration, and stopped the methane production. Investigation revealed that the loading ratio of DWAS for methanogenic sludge influences anaerobic digestion. Methane production significantly decreased and ammonia concentration increased with the increase in loading ratio of DWAS. Since the semicontinuous culture revealed that approximately 50% of organic nitrogen in DWAS converted to ammonia at sludge retention time (SRT) after 4 days at 37 degrees C and 1.33 days at 55 degrees C, the previous stripping of the ammonia produced from DWAS was carried out. The stripping of ammonia increased methane production significantly. This ammonia-methane two-stage anaerobic digestion demonstrated a successful methane production at SRT 20 days in the semicontinuous operation using a laboratory-scale reactor system.  相似文献   

6.
Biomass cost, supply, and quality are critical parameters to consider when choosing feedstocks and locations for biorefineries. Biomass cost is dependent upon feedstock type, location, quantities available, logistics costs, and the quality specifications required by the biorefinery. Biomass quality depends upon feedstock type, growth conditions, weather, harvesting methods, storage conditions, and any preprocessing methods used to improve quality. Biomass quantity depends on location as well as growth conditions, weather, harvesting methods, and storage conditions. This study examines the interdependencies of these parameters and how they affect the biomass blends required by biomass depots and/or biorefineries to achieve the lowest cost feedstock with sufficient quality at the quantities needed for biorefinery operation. Four biomass depots were proposed in South Carolina to each produce 200,000 t of feedstock per year. These depots supply a centrally located 800,000 t biorefinery that converts the feedstocks to bio-oil using either catalyzed or uncatalyzed fast pyrolysis. The four depots utilize biomass based upon availability, but the feedstock or feedstock blend still met the minimum quality requirements for the biorefinery. Costs were minimized by using waste biomass resources such as construction and demolition waste, logging residues, and forest residuals. As necessary, preprocessing methods such as air classification and acid leaching were used to upgrade biomass quality. For both uncatalyzed and catalyzed fast pyrolysis, all four depots could produce biomass blends that met quality and quantity specifications at a cost lower than using a single feedstock.  相似文献   

7.
Fast Kinetics of Fe2+ Oxidation in Packed-Bed Reactors   总被引:6,自引:0,他引:6       下载免费PDF全文
Thiobacillus ferrooxidans was used in fixed-film bioreactors to oxidize ferrous sulfate to ferric sulfate. Glass beads, ion-exchange resin, and activated-carbon particles were tested as support matrix materials. Activated carbon was tested in both a packed-bed bioreactor and a fluidized-bed bioreactor; the other matrix materials were used in packed-bed reactors. Activated carbon displayed the most suitable characteristics for use as a support matrix of T. ferrooxidans fixed-film formation. The reactors were operated within a pH range of 1.35 to 1.5, which effectively reduced the amount of ferric iron precipitation and eliminated diffusion control of mass transfer due to precipitation. The activated-carbon packed-bed reactor displayed the most favorable biomass holdup and kinetic performance related to ferrous sulfate oxidation. The fastest kinetic performance achieved with the activated-carbon packed-bed bioreactor was 78 g of Fe2+ oxidized per liter per h (1,400 mmol of Fe2+ oxidized per liter per h) at a true dilution rate of 40/h, which represents a hydraulic retention time of 1.5 min.  相似文献   

8.
Spirulina platensis was cultivated in a bench-scale airlift photobioreactor using synthetic wastewater (total nitrogen 412 mg L(-1), total phosphorous 90 mg L(-1), pH 9-10) with varying ammonia/total nitrogen ratios (50-100% ammonia with balance nitrate) and hydraulic residence times (15-25 d). High average biomass density (3500-3800 mg L(-1)) and productivity (5.1 g m(-2) d(-1)) were achieved when ammonia was maintained at 50% of the total nitrogen. Both high ammonia concentrations and mutual self-shading, which resulted from the high biomass density in the airlift reactor, were found to partially inhibit the growth of S. platensis. The performance of the airlift bioreactor used in this study compared favorably with other published studies. The system has good potential for treatment of high strength wastewater combined with production of algae for biofuels or other products, such as human and animal food, food supplements or pharmaceuticals.  相似文献   

9.
斑茅酶解转化可发酵单糖的液氨预处理及参数优化   总被引:1,自引:0,他引:1  
斑茅(Saccharum arundinaceum Retz.)的生物产量高,对土壤条件要求低,可作为纤维素乙醇生产的原料作物在我国南方地区广泛种植.实验以斑茅为原料,采用液氨预处理法克服其水解顽抗性,并添加纤维素酶进行酶解,运用高效液相色谱(HPLC)测定了酶解液中的单糖含量.实验结果表明在纤维素酶添加量为15FPU/(g当量葡聚糖)、预处理原料含水率为80%、预处理温度为130℃、预处理驻留时间为10 min、液氨与生物质的质量比例为2∶1时,葡聚糖和木聚糖的总转化率分别为69.34%和82.60%,相比于未作预处理的原料分别提高了573%和1 056%,单糖产量提高8倍.实验结果表明液氨预处理对斑茅是一种有效的预处理方式,并优于稀酸或湿爆法预处理,与酸预处理和氨爆法(AFEX)处理效果接近.  相似文献   

10.
Anaerobic degradation performance of a laboratory-scale packed-bed reactor (PBR) was compared with two fluidized-bed biofilm reactors (FBRs) on molasses and whey feeds. The reactors were operated under constant pH (7) and temperature (35 degrees C) conditions and were well mixed with high recirculation rates. The measured variables were chemical oxygen demand (COD), individual organic acids, gas composition, and gas rates. As carrier, sand of 0.3-0.5 mm diameter was used in the FBR, and porous clay spheres of 6 mm diameter were used in the PBR. Startup of the PBR was achieved with 1-5 day residence times. Start-up of the FBR was only successful if liquid residence times were held low at 2-3 h. COD degradations of 86% with molasses (90% was biodegradable) were reached in both the FBR and PBR at 6 h residence time and loadings of 10 g COD/L day. At higher loadings the FBR gave the best performance; even at 40-45 g COD/L day, with 6 h residence times, 70% COD was degraded. The PBR could not be operated above 20 g COD/L day without clogging. A comparison of the reaction rates show that the PBR and FBR per formed similarly at low concentrations in the reactors up to 1 g COD/L, while above 3 g COD/L the rates were 17.4 g COD/L day for the PBR and 38.4 g COD/L day for the FBR. This difference is probably due to diffusion limitations and a less active biomass content of the PBR compared with the fluidized bed.The results of dynamic step change experiments, in which residence times and feed concentrations were changed hanged at constant loading, demonstrated the rapid response of the reactors. Thus, the response times for an increase in gas rate or an increase in organic acids due to an increase in feed concentration were less than 1 day and could be explained by substrate limitation. Other slower responses were observed in which the reactor culture adapted over periods of 5-10 days; these were apparently growth related. An increase in loading of over 100% always resulted in large increases inorganic acids, especially acetic and propionic, as well as large increases in the CO(2) gas content. In general, the CO(2) content of the gas was very low, due to the large amount of dissolved CO(2) that exited with the liquid phase at low residence times. The performance of the FBR with whey was comparable to its performance with molasses, and switching of molasses to whey feed resulted in immediate good performance without adaptation.  相似文献   

11.
Optimization of solid substrate fermentation of wheat straw   总被引:9,自引:0,他引:9  
Optimal conditions for solid substrate fermentation of wheat straw with Chaetomium cellulolyticum in laboratory-scale stationary layer fermenters were developed. The best pretreatment for wheat straw was ammonia freeze explosion, followed by steam treatment, alkali treatment, and simple autoclaving. The optimal fermentation conditions were 80% (w/w) moisture content; incubation temperature of 37 degrees C; 2% (w/w) unwashed mycelial inoculum; aeration at 0.12 L/h/g; substrate thickness of 1 to 2 cm; and duration of three days. Technical parameters for this optimized fermentation were: degree of substance utilization, 27.2%; protein yield/substrate, 0.09 g; biomass yield/bioconverted substrate, 0.40 g; degree of bioconversion of total available sugars in the substrate, 60.5%; specific efficiency of bioconversion, 70.8%; and overall efficiency of biomass production from substrate, 42.7%. Mixed culturing of Candida utilis further increased biomass production by 20%. The best mode of fermentation was a semicontinuous fed-batch fermentation where one-half of the fermented material was removed at three-day intervals and replaced by fresh substrate. In this mode, protein production was 20% higher than in batch mode, protein productivity was maintained over 12 days, and sporulation was prevented.  相似文献   

12.
Pretreatment of rapeseed straw by soaking in aqueous ammonia   总被引:1,自引:0,他引:1  
Pretreatment of lignocellulosic biomass has gained attention for production of biofuels. In this study, pretreatment by soaking in aqueous ammonia was adopted for pretreatment of biomass for ethanol production. A central composite design of response surface methodology was used for optimization of the pretreatment condition of rapeseed straw, with respect to catalyst concentration, pretreatment time, and pretreatment temperature. The most optimal condition for pretreatment of rapeseed straw by soaking in aqueous ammonia was 19.8% of ammonia water, 14.2 h of pretreatment time, and a pretreatment temperature of 69.0 °C. Using these optimal factor values under experimental conditions, 60.7% of theoretical glucose was obtained, and this value was well within the range predicted by the model. SEM results showed that SAA pretreatment of rapeseed straw resulted in increased surface area and pore size, as well as enhanced enzymatic digestibility.  相似文献   

13.
Leachate from a municipal waste landfill site was treated using an activated sludge bioreactor, a fluidized bed biofilm reactor and a packed-bed column reactor (trickling filter). The leachate contained high organic matter (2.0–2.6 g/l of COD), high ammonium (300–700 mg/l) and sulphide (200–800 mg/l) concentrations, as well as low metal concentrations. The continuously operating reactors were employed to study the effects of TOC loading on the removal of TOC as well as on the nitrification and denitrification processes. Among the three biological treatment technologies investigated, the fluidized bed biofilm reactor was best with respect to removing ammonia and TOC. More than 90% of TOC and 99% of ammonia were removed when TOC loading was less than 0.5 kg/m3 × d. At a TOC loading of 4 kg/m3 × d, the removal of TOC and ammonia was 80% and 99%, respectively. In contrast, the treatment of leachate with the packed-bed reactor was successful in TOC removing only at TOC loading less than 0.3 kg/m3 × d (TOC elimination decreased from 86% at 0.06 kg/m3 × d to 60% at 0.3 kg/m3 × d). However, the reactor was active in nitrification even at a higher TOC loading (more than a 98% ammonia elimination at a TOC loading of 0.5 kg/m3 × d). Leachate was processed in the activated sludge reactor when TOC loading was less than 0.5 kg/m3 × d (with a removal of TOC and ammonia up to 83% and 99%, respectively). The activated sludge reactor was also effective in TOC removal at a higher TOC loading (e.g. a 74% TOC removal at a TOC loading of 1 kg/m3 × d), but for ammonia elimination, the activity continuously decreased (less than 60% ammonia removal at a TOC loading of 1 kg/m3 × d). Overloading in the activated sludge system was indicated by a high concentration of ammonia and nitrite in the effluent. In the packed bed reactor, overloading was characterized by a progressively incomplete TOC removal. No significant overloading was found in the fluidized bed reactor up to a TOC loading of 4 kg/m3 × d.  相似文献   

14.
Kluyveromyces marxianus UCD (FST) 55-82 cells were immobilized in Na alginate beads and used in a packed-bed bioreactor system for the continuous production of ethanol from the extract of Jerusalem artichoke tubers. Volumetric ethanol productivities of 104 and 80 g ethanol/ L/h were obtained at 80 and 92% sugar utilization, respectively. The maximum volumetric ethanol productivity of the immobilized cell bioreactor system was found to be 15 times higher than that of an ordinary-stirred-tank (CST) bioreactor using cells of K. marxianus. The immobilized cell bioreactor system was operated continuously at a constant dilution rate of 0.66 h(-1) for 12 days resulting in only an 8% loss of the original immobilized cell activity, which corresponds to an estimated half-life of ca. 72 days. The maximum specific ethanol productivity and maximum specific sugar uptake rate of the immobilized cells were found to be 0.55 g ethanol/g/biomass/h and 1.21 g sugars/g biomass/h, respectively.  相似文献   

15.
A polyurethane packed-bed-biofilm sequential batch reactor was fed with synthetic substrate simulating the composition of UASB reactor effluents. Two distinct ammonia nitrogen concentrations (125 and 250 mg l(-1)) were supplied during two sequential long-term experiments of 160 days each (320 total). Cycles of 24h under intermittent aeration for periods of 1h were applied, and ethanol was added as a carbon source at the beginning of each anoxic period. Nitrite was the main oxidized nitrogen compound which accumulated only during the aerated phases of the batch cycle. A consistent decrease of nitrite concentration started always immediately after the interruption of oxygen supply and addition of the electron donor. Removal to below detection limits of all nitrogen soluble forms was always observed at the end of the 24h cycles for both initial concentrations. Polyurethane packed-bed matrices and ethanol amendments conferred high process stability. Microbial investigation by cloning suggested that nitrification was carried out by Nitrosomonas-like species whereas denitrification was mediated by unclassified species commonly observed in denitrifying environments. The packed-bed batch bioreactor favored the simultaneous colonization of distinct microbial groups within the immobilized microbial biomass. The biofilm was capable of actively oxidizing ammonium and denitrification at high ratios in intermittent intervals within 24h cycles.  相似文献   

16.
An important step in phytomining operations is the recovery of metal from harvested plant material. In this work, a laboratory-scale horizontal tube furnace was used to generate Ni-enriched bio-ore from the dried biomass of Ni hyperaccumulator plants. Prior to furnace treatment, hairy roots of Alyssum bertolonii were exposed to Ni in liquid medium to give biomass Ni concentrations of 1.9% to 7.7% dry weight; whole plants of Berkheya coddii were grown in Ni-containing soil to produce above-ground Ni levels of up to 0.49% dry weight. The concentration of Ca in the Ni-treated B. coddii biomass was about 15 times greater than in A. bertolonii. After furnace treatment at 1200 degrees C under air, Ni-bearing residues with crystalline morphology and containing up to 82% Ni were generated from A. bertolonii. The net weight loss in the furnace and the degree of concentration of Ni were significantly reduced when the furnace was purged with nitrogen, reflecting the importance of oxidative processes in Ni enrichment. Ni in the B. coddii biomass was concentrated by a factor of about 17 to yield a residue containing 8.6% Ni; this bio-ore Ni content is substantially higher than the 1% to 2% Ni typically found in mined ore. However, the B. coddii samples after furnace treatment also contained about 34% Ca, mainly in the form of hydroxyapatite Ca(5)(PO(4))(3)OH. Such high Ca levels may present significant challenges for further metallurgical processing. This work demonstrates the feasibility of furnace treatment for generating Ni-rich bio-ore from hyperaccumulator plants. The results also suggest that minimizing the uptake of Ca and/or reducing the Ca content of the biomass prior to furnace treatment would be a worthwhile strategy for improving the quality of Ni bio-ore produced in phytomining operations.  相似文献   

17.
The sorption of heavy metals ions by immobilized Trichoderma viride biomass in a packed-bed column was studied. Fungal biomass T. viride was immobilized to Ca-alginate used for removal of Cr(VI), Ni(II) and Zn(II) ions from synthetic solutions and electroplating effluent. The experiments were conducted to study the effect of important design parameters such as bed height, flow rate and initial concentration of metal ions. The maximum sorption capacity was observed at flow rate 5 ml/min, bed height 20 cm and metal ions concentration 50 mg/L with immobilized biomass. Whereas, breakthrough time and saturation time decreased with increase flow rate and metal ions concentration and an inverse condition was found in bed height. The bed depth service time (BDST) Adams-Bohart model was used to analyze the experimental data. The regeneration efficiency was observed 40.1%, 75% and 53% for Cr(VI), Ni(II) and Zn(II) without any significant alteration in sorption capacity after 5th sorption-desorption cycles.  相似文献   

18.
Nitrogen cycling in poplar stands defoliated by insects   总被引:3,自引:0,他引:3  
Large-scale outbreaks of defoliating insects are common in temperate forests. These outbreaks are thought to be responsible for substantial cycling of nitrogen (N), and its loss from the system. Gypsy moth (Lymantria dispar) populations within poplar plots were manipulated over 2 years so that the ecosystem-wide consequences of catastrophic defoliation on N cycling could be examined. The quantities of N in leaf litter-fall, ammonia volatilization and soil N pools were estimated across the two seasons. Defoliated leaf biomass was estimated from experimentally derived approximate digestibility factors and added to the mass of senesced leaf to determine total annual leaf production. Throughout the growing season the defoliation treatment peaked at about 40% in year 1 and 100% in year 2. Rapid regrowth after defoliation meant that only 45% of the annual leaf biomass was consumed in the defoliation treatment in year 2, while control plots suffered about 20% consumption each year. In each year, defoliated plots produced 20% more leaf biomass and N than the controls, a phenomenon attributed to compensatory photosynthesis. No substantial losses of N via ammonia volatilization, nitrous oxide emission or nitrate leaching were observed. Neither was there any sustained or substantial gain in the soils microbial biomass or inorganic N pools. These observations suggest that the defoliated poplars were able to compete with soil microbes and N loss mechanisms for soil N as it became available, thereby ameliorating the effects of defoliation on soil nitrogen cycling. We conclude from this study that the N mineralized from defoliation residues was conserved in this plantation ecosystem.  相似文献   

19.
A simultaneous synthesis of biodiesel, as fatty acid methyl esters, and monoacylglycerols catalysed by the recombinant Rhizopus oryzae lipase immobilized by adsorption on Relizyme OD/403M is presented. The use of this 1(3)-positional specific lipase prevents the formation of glycerol as a by-product, thus avoiding its drawbacks. The synthesis was carried out in a solvent-free system and it has been studied in two different reactor systems: stirred tank and packed-bed reactor. Stirred tank reactor presented a high-initial reaction rate and achieved a 33.6% yield, which corresponds to a value of 50.4% of the maximum yield that can be achieved with a 1(3)-positional specific lipase. In packed-bed reactor there was a smaller initial reaction rate, but it was achieved a 49.1% yield, which corresponds to a 73.6% of the maximum yield. When a second batch is performed, the yield decreased only 4% when packed-bed reactor is employed whereas a drastic decrease is observed in a stirred tank operation. Therefore, packed-bed reactor showed a best performance and minor damage to the biocatalyst.  相似文献   

20.
A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号