首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel bacterial strain was isolated and identified as Bacillus pumilus, with the capability to produce cholesterol oxidase enzyme (55?kDa). The production of the enzyme was optimized via two-step statistical approach. Out of eight factors screened in Plackett–Burman, only four had significant effects on enzyme activity. The optimization process of these four variables by Box–Behnken revealed that the maximum enzyme activity (90?U/mL) was significantly obtained after 6 days of fermentation with 0.3%, 1% and 0.2% of NH4NO3, yeast extract and Tween 80, respectively. The purified enzyme showed optimum activity at pH 7.5 and temperature of 40?°C. The enzyme retained 100% of its activity after storage at 40?°C for 60?min. The enzyme also exhibited enhanced stability in the presence of Tween 80, methanol and isopropanol. This solvent and thermal stress tolerant enzyme, produced by B. pumilus, may provide a practical option for industrial and analytical applications.  相似文献   

2.
Catalase functioned exclusively to degrade hydrogen peroxide in a reaction mixture containing methanol and hydrogen peroxide, while, when the enzyme was coupled with glucose oxidase, successful conversion of methanol to formaldehyde occurred at the optimized ratio of glucose oxidase to catalase: activity, 1.0 × 10 ?3; number of molecules, 1.3; protein content, 1. These values in the coupled system were very similar to the ratio of alcohol oxidase to catalase in peroxisomes, one of the subcellular organelles from a methanol-assimilating yeast, Kloeckera sp. 2201, in which these enzymes were coupled to metabolize methanol efficiently. The presence of the optimum ratio in the coupled system in vitro was confirmed by the kinetic analysis of the expression of the peroxidatic activity of catalase coupled with glucose oxidase. Construction of the immobilized system of the coupled enzymes at the optimum ratio demonstrated that the oxidation of methanol through the peroxidatic function of catalase could be continuously and stably operated, the results indicating the usefulness of the system as a model of yeast peroxisomes. Thus, the coupled reaction with glucose oxidase brought out the latent function of catalase, which could not be expected in the system including only catalase.  相似文献   

3.
A β-glucosidase gene bglI from Aspergillus niger NL-1 was cloned and expressed in Pichia pastoris. The bglI gene consists of a 2583 bp open reading frame encoding 861 amino acids; the enzyme was classified into glycoside hydrolases 3. To improve the expression level of recombinant BGL in P. pastoris, fermentation conditions were optimized by the single-factor experiments. The optimal fermentation conditions were obtained: initial pH 5.0, methanol concentration 0.5% added into the culture every 24 h, and initial cell density (OD600) of 10 for induction. The activity of BGL was increased from 4 U/mL to 45 U/mL in optimal conditions. The BGL was purified by ultrafiltration and (NH4)2SO4 precipitation showing a single band on SDS-PAGE. The optimal activity was at pH 4.0 and 60°C. The recombinant enzyme was stable over a pH range of 3.0–7.0 and retained more than 85% activity after incubation at 60°C for 30 min. The kinetic experiments revealed K m and V max for p-nitrophenyl-β-D-glucoside of 0.64 mM and 370 U/mg, for cellobiose 8.59 mM and 1480 U/mg. The activity of BGL was not or only a little affected by many metal ions and EDTA and was enhanced by methanol or n-butyl alcohol. The BGL had a K i of 48 mM for glucose and retained 76% activity in the presence of 50 mM glucose. The favorable properties of BGL offer the potential for industrial application.  相似文献   

4.
The authors studied the effect of the various components of synthetic nutrient medium on glucose oxidase production in submerged cultivation ofAspergillus niger. It was found that the optimal glucose concentration was 3.5–6%. The only suitable source of nitrogen was nitrate nitrogen. If the medium contained ammonia nitrogen, glucose oxidase was not formed. The addition of citric acid to the medium very effectively stimulated theQ O 2 of the mycelium. Calcium added in the form of calcium nitrate had the same effect. A decrease in the Mg2+ ion concentration raised the activity of the enzyme, while inhibiting growth of the mycelium. If the initial pH was less than 4, glucose oxidase production was inhibited and did not start until the pH rose in the course of fermentation. Differences in the initial pH affected not only production of the enzyme, but also the formation of acids and the morphological appearance of the submerged mycelium. On the basis of the findings the synthetic medium for submerged cultivation ofAspergillus niger was modified, resulting in a 50–100% increase in glucose oxidase production as compared with the original medium.  相似文献   

5.
Glucose oxidase from Penicillium amagasakiense was purified to homogeneity by ion-exchange chromatography and deglycosylated with endoglycosidase H. On the basis of gas chromatography and sodium dodecyl sulphate/polyacrylamide gel electrophoretic (SDS-PAGE) analyses, the protein-bound high-mannose-type carbohydrate moiety corresponded to 13% of the molecular mass of glycosylated glucose oxidase. A total of six N-glycosylation sites per dimer were determined from the N-acetylglucosamine content. The enzymatically deglycosylated enzyme contained less than 5% of the original carbohydrate moiety. A molecular mass of 130 kDa (gel filtration) and 133 kDa (native PAGE) was determined for the dimer and 67 kDa (SDS-PAGE) for the monomer of the deglycosylated enzyme. The N-terminal sequence, which has not been published for glucose oxidase from P. amagasakiense to date and which showed less than 50% homology to the N terminus of glucose oxidase from Aspergillus niger, and the amino acid composition were not altered by the deglycosylation. Deglycosylation also did not affect the kinetics of glucose oxidation or the pH and temperature optima. It also did not increase the susceptibility of the enzyme to proteolytic degradation. However, deglycosylated glucose oxidase exhibited decreased pH and thermal stability. The thermal stability of both enzymes was shown to be dependent on the buffer concentration and was enhanced by certain additives, particularly 1 M (NH4)2SO4, which stabilised glucose oxidase 100- to 300-fold at 50 °C and pH 7–8, and 2 M KF, which stabilised the enzyme up to 36-fold at 60 °C and pH 6. In sodium acetate buffer, changes in pH (4–6) affected the affinity for glucose but had no effect on the V max of the reaction. In contrast, in TRIS buffer, pH 8, a 10-fold decrease in V max and a 2-fold decrease in K m were observed. Received: 8 October 1996 / Received revision: 14 January 1997 / Accepted: 17 January 1997  相似文献   

6.
Catalase functioned exclusively to degrade hydrogen peroxide in a reaction mixture containing methanol and hydrogen peroxide, while, when the enzyme was coupled with glucose oxidase, successful conversion of methanol to formaldehyde occurred at the optimized ratio of glucose oxidase to catalase: activity, 1.0 × 10 -3; number of molecules, 1.3; protein content, 1. These values in the coupled system were very similar to the ratio of alcohol oxidase to catalase in peroxisomes, one of the subcellular organelles from a methanol-assimilating yeast, Kloeckera sp. 2201, in which these enzymes were coupled to metabolize methanol efficiently. The presence of the optimum ratio in the coupled system in vitro was confirmed by the kinetic analysis of the expression of the peroxidatic activity of catalase coupled with glucose oxidase. Construction of the immobilized system of the coupled enzymes at the optimum ratio demonstrated that the oxidation of methanol through the peroxidatic function of catalase could be continuously and stably operated, the results indicating the usefulness of the system as a model of yeast peroxisomes. Thus, the coupled reaction with glucose oxidase brought out the latent function of catalase, which could not be expected in the system including only catalase.  相似文献   

7.
The capping of electron relay units in mesoporous carbon nanoparticles (MPC NPs) by crosslinking of different enzymes on MPC NPs matrices leads to integrated electrically contacted bienzyme electrodes acting as dual biosensors or as functional bienzyme anodes and cathodes for biofuel cells. The capping of ferrocene methanol and methylene blue in MPC NPs by the crosslinking of glucose oxidase (GOx) and horseradish peroxidase (HRP) yields a functional sensing electrode for both glucose and H2O2, which also acts as a bienzyme cascaded system for the indirect detection of glucose. A MPC NP matrix, loaded with ferrocene methanol and capped by GOx/lactate oxidase (LOx), is implemented for the oxidation and detection of both glucose and lactate. Similarly, MPC NPs, loaded with 2,2′‐azino‐bis(3‐ethylbenzo­thiazoline‐6‐sulphonic acid), are capped with bilirubin oxidase (BOD) and catalase (Cat), to yield a bienzyme O2 reduction cathode. A biofuel cell that uses the bienzyme GOx/LOx anode and the BOD/Cat cathode, glucose and/or lactate as fuels, and O2 and/or H2O2 as oxidizers is assembled, revealing a power efficiency of ≈90 μW cm?2 in the presence of the two fuels. The study demonstrates that multienzyme MPC NP electrodes may improve the performance of biofuel cells by oxidizing mixtures of fuels in biomass.  相似文献   

8.
The enzymatic lignocellulosic biomass conversion into value-added products requires the use of enzyme-rich cocktails, including β-glucosidases that hydrolyze cellobiose and cellooligosaccharides to glucose. During hydrolysis occurs accumulation of monomers causing inhibition of some enzymes; thus, glucose/xylose tolerant β-glucosidases could overcome this drawback. The search of new tolerant enzymes showing additional properties, such as high activity, wide-pH range, and thermal stability is very relevant to improve the bioprocess. We describe a novel β-glucosidase GH1 from the thermophilic Anoxybacillus thermarum (BgAt), which stood out by the robustness combination of great glucose/xylose tolerance, thermal stability, and high Vmax. The recombinant his-tagged-BgAt was overexpressed in Escherichia coli, was purified in one step, showed a high glucose/xylose tolerance, and activity stimulation (presence of 0.4 M glucose/1.0 M xylose). The optimal activity was at 65 °C - pH 7.0. BgAt presented an extraordinary temperature stability (48 h – 50 °C), and pH stability (5.5–8.0). The novel enzyme showed outstanding Vmax values compared to other β-glucosidases. Using p-nitrophenyl-β-d-glucopyranoside as substrate the values were Vmax (7614 U/mg), and KM (0.360 mM). These values suffer a displacement in Vmax to 14,026 U/mg (glucose), 14,886 U/mg (xylose), and KM 0.877 mM (glucose), and 1.410 mM (xylose).  相似文献   

9.
Abstract

The use of enzymes in many industrial applications has gained increasing importance in recent years due to their non-toxic, specific, and eco-friendly characteristics. However, two main reasons limiting their use in industry are production costs and instability under harsh conditions. We isolated thermophilic and halo-tolerant/halophilic bacteria from bio-deteriorated plastic waste. Among them, Bacillus mojavensis isolate TH309 exhibited excellent esterase secretion ability. Esterase production on sunflower seed meal increased approximately 20-fold (80.43?U/gds) with optimization of solid state medium using Plackett Burman design and response surface methodology Box Behnken design. The enzyme (BmEST) was purified 7.82-fold using ultrafiltration and anion-exchange techniques. The molecular weight of BmEST was estimated to be 30?kDa. BmEST demonstrated an optimal temperature and pH of 80?°C and 8.0, respectively, and was remarkable stable at 60–90?°C. BmEST exhibited high activity and stability in the presence of NaCl (5–20%). Furthermore, it was hyper-activated by n-pentane, acetone, hexane, DMSO, methanol, and ethanol. The apparent Km and Vmax values of BmEST were 1.28?mM and 23.88 µmol/min, respectively, with p-nitrophenol butyrate as a substrate. The enzyme caused a mass loss of poly(ε-caprolactone) films of 44% after 12?h hydrolysis. As a result, BmEST, with remarkable functional properties, presents a promising candidate to meet the needs of certain harsh biotechnological applications.  相似文献   

10.
Apparent kinetics and pH–activity relationships have been determined for glucoamylase and glucose oxidase immobilized on activated carbon using a diimide method. Reaction rate expressions of Michaelis–Menten form adequately approximate the observed kinetics for both enzyme preparations over the ranges of substrate concentrations considered. Influences of external mass transfer as well as substrate and product adsorption on interpretation of the experimental data have been examined. Immobilization of a glucose oxidase–gluconolactonase enzyme mixture has been found to increase substantially the ratio of gluconolactonase to glucose oxidase activities compared to the corresponding activity ratio for these enzymes in solution.  相似文献   

11.
Paecilomyces variotii IRI017 was isolated as a formaldehyde-resistant fungus from wastewater containing formaldehyde. The fungus grew in a medium containing 0.5% formaldehyde and had consumed formaldehyde completely after 5 days. Alcohol oxidase was purified from the fungus grown on methanol. A 20-fold purification was achieved with a yield of 44%. The molecular mass of the purified enzyme was estimated to be 73 and 450 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography, respectively, suggesting that the enzyme consists of six identical subunits. The N-terminal amino acid sequence of the subunit was TIPDEVDIII. The enzyme showed an absorption spectrum typical of a flavoprotein and had a noncovalently bound flavin different from FAD, FMN, and riboflavin. The pH optimum of the enzyme activity was pH 6–10. The enzyme was stable in the pH range of pH 5–10. The enzyme retained full activity after incubation at 50°C for 30 min. The enzyme oxidized not only methanol but also lower primary alcohols and formaldehyde. The K m values for methanol, ethanol, and formaldehyde were 1.9, 3.8, and 4.9 mmol l−1, respectively.  相似文献   

12.
Potato aphid Macrosiphum euphorbiae (Thomas) was found to contain high amounts of o-diphenol oxidase activity. Enzyme activity was largely distributed into the postmitochondrial supernatant from Brij-35 extracted aphids and occurs in a latent form that was activated up to 45-fold by pretreatment with isopropanol. The aphid enzyme has a broad pH optimum near 6, and utilized L-dopa (Km = 1.4 mM, Vmax = 348 nmol/min-mg protein), dopamine, and 4-methylcatechol the best out of the twelve substrates tested. In addition, this activity is a typical copper-dependent oxidase in that it is potently inhibited by phenylthiourea (50% inhibition at 30nM) and other copper chelators, including salicylhydroxamic acid. The above properties are common to most insect tyrosinases. However, the aphid enzyme lacked the o-hydroxylase and laccase components and the optimal activity at higher temperatures that are typical of cuticular tyrosinases of other insects. The high levels of o-diphenol oxidase in aphids compared to other insects is surprising, since the major function associated with these enzymes, that of melanization and sclerotization of cuticle, is of much less importance to aphids. The possibility that aphids use this enzyme to metabolize dietary phenolics is discussed.  相似文献   

13.
Abstract

In this study, the different mole ratios of glucose oxidase/chitosan/dextran–aldehyde and glucose oxidase/chitosan/dextran–sulfate complexes were synthesized. The modification of glucose oxidase by non-covalent complexation with dextran and chitosan in different molar ratios was studied in order to increase the enzyme activity. The enzyme/polymer complexes obtained were investigated by UV spectrophotometer and dynamic light scattering. Activity determination of synthesized complexes and free enzyme were performed at a temperature range. The best results were obtained by Cchitosan/Cdextran–aldehyde = 10/1 ratio and Cchitosan/Cdextran–sulfate = 1/5 ratio that were used in thermal stability, shelf life, salt stress, and ethanol effect experiments. The results demonstrated that both complexes were thermally stable at 60?°C and had superior storage stability compared to the free glucose oxidase. Complexes showed higher enzymatic activity than free enzyme in the organic solvent environment using 10% ethanol. The complexes were resistant to salt stress containing 0.1?M NaCl or CaCl2. The particle size distribution results of the triple complex evaluated the complexation of the chitosan, dextran derivative, and glucose oxidase. The average size of the triple complex in diameter was found to be 325.8?±?9.3?nm. Overall findings suggest that the complexes of glucose oxidase, chitosan, and dextran showed significant enhancement in the enzyme activity.  相似文献   

14.
A benzyl alcohol oxidase (BAO) was purified to homogeneity from Botrytis cinerea. The enzyme was found to have a molecular mass of 214 kD with a trimeric structure, and optimal pH and temperature of 5.0 and 30°C, respectively. The enzyme activity was not sensitive to metal ions or to metal ion chelators, while thiol blocking reagents strongly inhibited BAO activity. Sulfur dioxide irreversibly inhibited the enzyme activity and the inhibitory effect of ethanol was weak and reversible. Benzyl alcohol was the most effective alcohol substrate for BAO. Para or meta monosubstituted benzyl alcohol with methyl or methoxy groups were good substrates. BAO also oxidized cinnamyl alcohol, furfuryl alcohol, and some terpenic alcohols· with an alkenyl group near the reactive carbinol. Secondary alcohol, methanol and phenol were not substrates. Product inhibition studies suggested that benzaldehyde and benzyl alcohol were bound at different places to the active site. O2 was the only electron acceptor identified and Botrytis cinerea benzyl alcohol oxidase was classified .as EC 1.1.3.7 according to stoichiometrical studies. We discuss the metabolic role of BAO in the Botrytis cinerea-grape host-parasite relationship.  相似文献   

15.
A large number of protein sequences are registered in public databases such as PubMed. Functionally uncharacterized enzymes are included in these databases, some of which likely have potential for industrial applications. However, assignment of the enzymes remained difficult tasks for now. In this study, we assigned a total of 28 original sequences to uncharacterized enzymes in the FAD-dependent oxidase family expressed in some species of bacteria including Chryseobacterium, Flavobacterium, and Pedobactor. Progenitor sequence of the assigned 28 sequences was generated by ancestral sequence reconstruction, and the generated sequence exhibited L-lysine oxidase activity; thus, we named the enzyme AncLLysO. Crystal structures of ligand-free and ligand-bound forms of AncLLysO were determined, indicating that the enzyme recognizes L-Lys by hydrogen bond formation with R76 and E383. The binding of L-Lys to AncLLysO induced dynamic structural change at a plug loop formed by residues 251 to 254. Biochemical assays of AncLLysO variants revealed the functional importance of these substrate recognition residues and the plug loop. R76A and E383D variants were also observed to lose their activity, and the kcat/Km value of G251P and Y253A mutations were approximately 800- to 1800-fold lower than that of AncLLysO, despite the indirect interaction of the substrates with the mutated residues. Taken together, our data demonstrate that combinational approaches to sequence classification from database and ancestral sequence reconstruction may be effective not only to find new enzymes using databases of unknown sequences but also to elucidate their functions.  相似文献   

16.
Amylases are a group of enzymes with a wide variety of industrial applications. Enhancement of α-amylase production from the marine protists, thraustochytrids has been attempted for the first time by applying statistical-based experimental designs using response surface methodology (RSM) and genetic algorithm (GA) for optimization of the most influencing process variables. A full factorial central composite experimental design was used to study the cumulative interactive effect of nutritional components viz., glucose, corn starch, and yeast extract. RSM was performed on two objectives, that is, growth of Ulkenia sp. AH-2 (ATCC® PRA­296) and α-amylase activity. When GA was conducted for maximization of the enzyme activity, the optimal α-amylase activity was found to be 71.20?U/mL which was close to that obtained by RSM (71.93?U/mL), both of which were in agreement with the predicted value of 72.37 U/mL. Optimal growth at the optimized process variables was found to be 1.89A660nm. The optimized medium increased α-amylase production by 1.2-fold.  相似文献   

17.
An extracellular amylase from a bacterium, Bacillus megaterium strain No, 32, was purified over 2600-fold by precipitation with ammonium sulfate, column chromatography with SE-Sephadex and gel-filtration with Sephadex G–100. The enzyme was most active at pH values around 6.5, and was stable in pH range between 5 and 7.5. The enzyme activity was inhibited by p-chloromercuribenzoate and was restored completely by the addition of cystein. The isoelectric point of the enzyme was pH 9.1. Results of experiments in which maltooligo-saccharides terminated at the reducing end by radioactive glucose were used as substrates for the enzyme, showed that the enzyme removed two glucose unit (maltose) from the nonreducing end. From these results, the enzyme resembled the higher plant β-amylase in the action.  相似文献   

18.
The growth of Hansenula polymorpha and Kloeckera sp. 2201 with a mixture of glucose and methanol (38.8%/61.2%, w/w) and the regulation of the methanol dissimilating enzymes alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase were studied in chemostat culture, as a function of the dilution rate. Both organisms utilized and assimilated glucose and methanol simultaneously up to dilution rates of 0.30 h-1 (H. polymorpha) and 0.26h-1, respectively (Kloeckera sp. 2201) which significantly exceeded max found for the two yeasts with methanol as the only source of carbon. At higher dilution rates methanol utilisation ceased and only glucose was assimilated. Over the whole range of mixed-substrate growth both carbon sources were assimilated with the same efficiency as during growth with glucose or methanol alone.In cultures of H. polymorpha, however, the growth yield for glucose was lowered by the unmetabolized methanol at high dilution rates. During growth on both carbon sources the repression of the synthesis of all catabolic methanol enzymes which is normally caused by glucose was overcome by the inductive effect of the simultaneously fed methanol. In both organisms the synthesis of alcohol oxidase was found to be regulated differently as compared to catalase, formaldehyde and formate dehydrogenase. Whereas increasing repression of the synthesis of alcohol oxidase was found with increasing dilution rates as indicated by gradually decreasing specific activities of this enzyme in cell-free extracts, the specific activities of this enzyme in cell-free extracts, the specific activities of catalase and the dehydrogenases increased with increasing growth rates until repression started. The results indicate similar patterns of the regulation of the synthesis of methanol dissimilating enzymes in different methylotrophic yeasts.Abbreviations and Terms C1 Methanol - C6 glucose; D dilution rate (h-1) - D c critical dilution rate (h-1) - q s specific, rate of substrate consumption (g substrate [g cell dry weight]-1 h-1) - q CO2 and q O2 are the specific rates of carbon dioxide release and oxygen consumption (mmol [g cell dry weight]-1 h-1) - RQ respiration quotient (q CO2 q O2 1 ) - s 0(C1) and s 0(C6) are the concentrations of methanol and glucose in the inflowing medium (g l-1) - s residual substrate concentration in the culture liquid (g l-1) - Sp. A. enzyme specific activity - x cell dry weight concentration (gl-1) - Y X/C6 growth yield on glucose (g cell dry weight [g substrate]-1  相似文献   

19.
In recent years, various studies in the field of industrial enzymes of biotechnology have gained importance due to increasing development in enzyme technology. The different areas where enzymes are used and their economic value of biotechnological products further increases their importance. There are hundreds of different types of cheese but each is made by coagulating milk using rennet to give curds. Today, researchers have begun to develop alternative systems in the cheese industry related to milk-clotting enzymes. In this study, the nucleic acid sequence encoding the optimized chymosin enzyme was used and cloned by Not I and Mlu I restriction enzymes into pTOLT vector system. Then using this construct, the enzyme as a fusion with Tol-A-III protein was produced in Escherichia coli BL21 (DE3) cells. After disrupting the E. coli cell and separating from the constituents by high speed centrifugation, the enzyme was purified by affinity chromatography and fractions were analyzed by SDS–PAGE. Purified enzyme has shown its activity. Optimum temperature and pH of CHY-Tol-A-III protein were 40°C and 6.5, respectively.  相似文献   

20.
《Biosensors》1986,2(2):71-87
Glucose dehydrogenase (GDH), one of the recently discovered NAD(P)+-independent ‘quinoprotein’ class of oxidoreductase enzymes, was purified from Acinetobacter calcoaceticus LMD 79.41 and immobilised on a 1,1'-dimethylferrocene-modified graphite foil electrode.The second-order rate constant (ks) for the transfer of electrons between GDH and ferrocenemonocarboxylic acid (FMCA) in a homogeneous system, determined using direct current (DC) cyclic voltammetry, was found to be 9.4 × 106 litres mol−1 s−1. This value of ks for GDH was more than 40 times greater than that for the flavoprotein glucose oxidase (GOD) under identical conditions. Such high catalytic activities were also observed when GDH was immobilised in the presence of an insoluble ferrocene derivative; a biosensor based on GDH was found to produce more than twice the current density of similar GOD-based electrodes. The steady-state current produced by the GDH-based electrode was limited by the enzymic reaction since methods which increased the enzyme loadings elevated the upper limit of glucose detection from 5 mM to 15 mM.The temperature, pH, stability and response characteristics of the GDH-based glucose sensor illustrate its potential usefulness for a variety of practical applications. In particular, the high catalytic activity and oxygen insensitivity of this biosensor make it suitable for in vivo blood glucose monitoring in the management of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号