首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cationic lipid-DNA (CL-DNA) complexes are abundantly used in nonviral gene therapy clinical applications. Surface functionality is the next step in developing these complexes as competent, target-specific gene carriers. Poly(ethylene glycol) (PEG) is the natural choice to serve as a protective coat or act as a tether for a specific ligand on the surface of these complexes due to its biocompatibility and ability to convey stealth-like properties. Understanding the effect of PEG on the internal structure and surface properties of CL-DNA complexes is essential in developing vectors with more complex derivatives of PEG, such as Arg-Gly-Asp (RGD)-based peptide-PEG-lipids. We report on x-ray diffraction studies to probe the internal structure of CL-DNA complexes consisting of a ternary mixture of cationic lipids, neutral lipids, and PEG-lipids. The PEG-coated complexes are found to exhibit a structure consistent with the lamellar phase. In addition, three distinct DNA interchain interaction regimes were found to exist, due to a), repulsive long-range electrostatic forces; b), short-range repulsive hydration forces; and c), novel polymer-induced depletion attraction forces in two dimensions. Optical microscopy and reporter gene assays further demonstrate the incorporation of the PEG-lipids into the lamellar CL-DNA complexes under biologically relevant conditions, revealing surface modification. Both techniques show that PEG-lipids with a polymer chain of molecular weight 400 do not provide adequate shielding of the PEGylated CL-DNA complexes, whereas PEG-lipids with a polymer chain of molecular weight 2000 confer stealth-like properties. This surface functionalization is a crucial initial step in the development of competent vectors for in vivo systemic gene delivery and suggests that a second type of surface functionality can be added specifically for targeting by the incorporation of peptide-PEG-lipids.  相似文献   

2.
The equilibrium binding constants and stoichiometries between PEGylated biotins and avidin have been studied for a range of PEGylated biotin molecular weights. These studies show that as the molecular weight of PEG (polyethylene glycol) increases over the range 588, 3400, and 5000 g/mol, the equilibrium dissociation constants of PEGylated biotins with avidin increase to approximately 10 (-8) M compared with 10 (-15) M for the biotin-avidin complex. The stoichiometries of PEGylated biotins with avidin are 4:1 for 588 and 3400 g/mol PEG and 1:1 for 5000 g/mol PEG. The data demonstrate that the equilibrium binding constant and the stoichiometry of the avidin-biotin-PEG complex system can be adjusted by the length of PEG chains. This approach may be used with PEGylated biotin analogues for pretargeting in drug delivery, such as a biotin-PEGylated enzyme for converting an inactive prodrug into a cytotoxin. When a PEG chain is chosen as an appropriate spacer, the length of the PEG chain must be considered because PEG can block the binding sites on avidin.  相似文献   

3.
PEGylated dendrimers with core functionality for biological applications   总被引:3,自引:0,他引:3  
The synthesis of a variety of core functionalized PEGylated polyester dendrimers and their in vitro and in vivo properties are described in this report. These water-soluble dendrimers have been designed to carry eight functional groups on their dendritic core for a variety of biological applications such as drug delivery and in vivo imaging as well as eight solubilizing groups. Using a common symmetrical aliphatic ester dendritic core and trifunctional amino acid moieties, a library of dendrimers with phenols, alkyl alcohols, alkynes, ketones, and carboxylic acid functionalities has been synthesized without the need for column chromatography. The amines were PEGylated, leaving the other functionality of the amino acid available for further manipulation such as the attachment of drugs and/or labels. Radiolabeling experiments with the PEGylated dendrimers showed that they had a long circulation half-life in mice, confirming the potential of this class of dendrimers for therapeutic and/or diagnostic applications. A carboxylic acid functionalized dendrimer was elaborated to carry doxorubicin bound via a hydrazone bond. The drug-loaded carrier accumulated more in tumors and less in healthy organs than the clinically used PEGylated liposomal formulation Doxil. The efficient synthesis, high versatility, and favorable biological properties make these PEGylated polyester dendrimers promising structures for therapeutic and/or imaging applications.  相似文献   

4.
The mechanisms behind protein PEGylation are complex and dictated by the structure of the protein reactant. Hence, it is difficult to design a reaction process which can produce the desired PEGylated form at high yield. Likewise, efficient purification processes following protein PEGylation must be constructed on an ad hoc basis for each product. The retention and binding mechanisms driving electrostatic interaction-based chromatography (ion-exchange chromatography) of PEGylated proteins (randomly PEGylated lysozyme and mono-PEGylated bovine serum albumin) were investigated, based on our previously developed model Chem. Eng. Technol. 2005, 28, 1387–1393. PEGylation of each protein resulted in a shift to a smaller elution volume compared to the unmodified molecule, but did not affect the number of binding sites appreciably. The shift of the retention volume of PEGylated proteins correlated with the calculated thickness of PEG layer around the protein molecule. Random PEGylation was carried out on a column (solid-phase PEGylation) and the PEGylated proteins were separated on the same column. Solid-phase PEGylation inhibited the production of multi-PEGylated forms and resulted in a relatively low yield of selective mono-PEGylated form. Pore diffusion may play an important role in solid-phase PEGylation. These results suggest the possibility of a reaction and purification process development based on the mechanistic model for PEGylated proteins on ion exchange chromatography.  相似文献   

5.
PEGylation, the covalent attachment of polyethylene glycol (PEG) chains to protein, isa promising method for making an efficient protein drug. Several PEGylated protein drugs, such as PEGylated interferons, are already on the market and others are presently in their clinical trials. However, the PEGylation reaction is very product specific so that generalized or platform processes for both reaction and purification have not yet been established. In the current issue of Biotechnology Journal, Günter Allmaier and colleagues report a modified microchip capillary gel electrophoresis (MCGE), which allows for a rapid separation (one minute) of PEGylated proteins of different degrees of PEGylation.  相似文献   

6.
聚乙二醇(PEG)定点修饰蛋白药物是针对蛋白特定基团特定位点的修饰,相比于非定点随机修饰的特点是PEG修饰位点的单一与确定,避免了修饰异构体的干扰,能较好的保留药物体内外活性;修饰产物组成均一、性质稳定,便于质量控制,降低由修饰异构体引起的潜在的安全性风险,并很大程度上提高得率,降低成本。已有PEG定点修饰蛋白药物上市,还有部分处于临床试验阶段。本文综述了PEG定点修饰蛋白药物的技术研究与临床进展,包括PEG定点修饰剂、定点修饰方法、PEG定点修饰的上市和临床药物及面临的问题,并展望了PEG修饰技术未来的发展前景。  相似文献   

7.
Based on fourth generation diaminobutane poly(propylene imine) dendrimer, a novel targeted drug nanocarrier was prepared, bearing protective PEG chains and a folate targeting ligand. As a control a PEGylated derivative without folate was also synthesized. The encapsulation and release properties of these PEGylated derivatives were investigated employing etoposide, an anticancer hydrophobic drug. Enhanced solubility of etoposide was achieved inside the dendrimeric scaffold which was subsequently released in a controlled manner. These properties coupled with specificity towards the folate receptor and the low toxicity render folate functionalized PEGylated poly(propylene imine) dendrimer promising candidate for targeted drug delivery.  相似文献   

8.
《Process Biochemistry》2014,49(7):1092-1096
PEGylation can effectively improve the therapeutic potential of staphylokinase (SAK), a thrombolysis agent for therapy of myocardial infarction. However, polyethylene glycol (PEG) can sterically shield SAK and drastically decrease its bioactivity. In the present study, N-terminally PEGylated SAKs (5 and 20 kDa PEG), C-terminally PEGylated SAKs with phenyl linker and the ones with amyl linker (5 and 20 kDa PEG) were prepared. The effects of the PEG length, the PEGylation site and linker chemistry on the bioactivity of the heat-treated PEGylated SAK were investigated. Heat treatment at 70 °C for 2 h can improve the bioactivity of the C-terminally PEGylated SAKs, where the one with amyl linker and 20 kDa PEG showed the highest increase extent (27%) in the bioactivity. Thus, our study can advance the development of long-acting pharmaceutical protein with high bioactivity.  相似文献   

9.
PEGylated multivalent structures are a new class of platform for biological applications due to their biocompatibility properties. Here, we present the synthesis of a trivalent structure 1 based on poly(ethylene glycol) units (PEG) as potential synthetic multifunctional carrier molecule. To evaluate whether this PEGylated platform could be useful for the conjugation of bioactive compounds, a well-known lipopolysaccharide (LPS) inhibitor 2, developed in our laboratory, was selected to be conjugated to 1. The LPS-neutralizing activity of the resulted conjugates and precursors was established using the chromogenic Limulus amebocyte lysate (LAL) assay. The trivalent structure 1 did not show LPS-binding activity, nonconjugate LPS inhibitor 2 showed high LPS-neutralizing activity, and the trivalent conjugate 4 displayed increased LPS-neutralizing activity and a reduced toxicity profile. These results prove the efficacy of this trivalent platform as a multivalent ligand scaffold for biological applications.  相似文献   

10.
Polyethylene glycol modification (PEGylation) can enhance the pharmacokinetic properties of therapeutic proteins by the attachment of polyethylene glycol (PEG) to the surface of a protein to shield the protein surface from proteolytic degradation and limit aggregation. However, current PEGylation strategies often reduce biological activity, potentially as a result of steric hindrance of PEG. Overall, there are no structure‐based guidelines for selection of conjugate sites that retain optimal biological activity with improved pharmacokinetic properties. In this study, site‐specific PEGylation based on the FGF2‐FGFR1‐heparin complex structure is performed. The effects of the conjugate sites on protein function are investigated by measuring the receptor/heparin binding affinities of the modified proteins and performing assays to measure cell‐based bio‐activity and in vivo stability. Comprehensive analysis of these data demonstrates that PEGylation of FGF2 that avoids the binding sites for fibroblast growth factor receptor 1 (FGFR1) and heparin provides optimal pharmacokinetic enhancement with minimal losses to biological activity. Animal experiments demonstrate that PEGylated FGF2 exhibits greater efficacy in protecting against traumatic brain injury‐induced brain damage and neurological functions than the non‐modified FGF2. This rational structure‐based PEGylation strategy for protein modification is expected to have a major impact in the area of protein‐based therapeutics.  相似文献   

11.
Derivatisation of lysine residues in human albumin was performed in vitro by reaction with penicillin G. This modification reaction has been reported to occur in patients treated with high dosages of the antibiotic. The structure of the modified protein was characterised by mass spectrometry and circular dichroism. The number of the lysine residues involved depends on the time of incubation and on the drug/protein molar ratio. The secondary structure of the modified protein does not change significantly with respect to the native protein. Furthermore, the binding properties of the modified albumin were characterised by CD spectroscopy. Phenylbutazone, diazepam and bilirubin, known to bind to specific binding areas, were used as markers. A decrease of the affinity to the high-affinity binding sites was observed after the modification.  相似文献   

12.
Absorption, resonance Raman, surface-enhanced Raman spectroscopy and differential scanning microcalorimetry were employed to study the interaction of hypocrellin A with human serum albumin. The identification of the binding place for hypocrellin A as well as the model for the albumin-hypocrellin A complex are proposed. In this model hypocrellin A interacts with albumin through more than one binding site placed on the protein surface. This model of non-specific interaction could explain why the absorption spectrum of hypocrellin A does not change in the presence of albumin and why the presence of the drug does not change significantly the thermodynamic parameters of the protein, while the Raman spectra show evident changes concerning both the protein and the drug structure. Even if hypocrellin A does not interact with an interior binding site, it can affect deeply the general albumin structure.  相似文献   

13.
Although human serum albumin is synthesized without carbohydrate, glycosylated variants of the protein can be found. We have determined the structure of the glycan bound to the double-mutant albumin Redhill (-1 Arg, 320 Ala-->Thr). The oligosaccharide was released from the protein using anhydrous hydrazine, and its structure was investigated using neuraminidase and a reagent array analysis method, which is based on the use of specific exoglycosidases. The glycan was shown to be a disialylated biantennary complex type oligosaccharide N-linked to 318 Asn. However, a minor part (11 mol%) of the glycan was without sialic acid. The structure is principally the same as that of glycans bound to two other types of glycosylated albumin variants. Glycosylation can affect, for example, the fatty acid binding properties of albumin. Taking the present information into account, it is apparent that different effects on binding are caused not by different glycan structures but by different locations of attachment, with the possible addition of local conformational changes in the protein molecule.  相似文献   

14.
PEGylation is a successful approach to improve potency of a therapeutic protein. The improved therapeutic potency is mainly due to the steric shielding effect of PEG. However, the underlying mechanism of this effect on the protein is not well understood, especially on the protein interaction with its high molecular weight substrate or receptor. Here, experimental study and molecular dynamics simulation were used to provide molecular insight into the interaction between the PEGylated protein and its receptor. Staphylokinase (Sak), a therapeutic protein for coronary thrombolysis, was used as a model protein. Four PEGylated Saks were prepared by site-specific conjugation of 5 kDa/20 kDa PEG to N-terminus and C-terminus of Sak, respectively. Experimental study suggests that the native conformation of Sak is essentially not altered by PEGylation. In contrast, the bioactivity, the hydrodynamic volume and the molecular symmetric shape of the PEGylated Sak are altered and dependent on the PEG chain length and the PEGylation site. Molecular modeling of the PEGylated Saks suggests that the PEG chain remains highly flexible and can form a distinctive hydrated layer, thereby resulting in the steric shielding effect of PEG. Docking analyses indicate that the binding affinity of Sak to its receptor is dependent on the PEG chain length and the PEGylation site. Computational simulation results explain experimental data well. Our present study clarifies molecular details of PEG chain on protein surface and may be essential to the rational design, fabrication and clinical application of PEGylated proteins.  相似文献   

15.
Monomethyl poly(ethylene glycol) (mPEG)-modified bovine serum albumin (BSA) conjugates (BSA-mPEG) were obtained by the mild Cu(I)-mediated cycloaddition reaction of azided BSA (BSA-N(3) ) and alkyne-terminated mPEG. The structure and characteristics of BSA-mPEG conjugates were thoroughly investigated. There were about two PEG chains conjugated onto each BSA molecule as determined by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) analysis. The intrinsic nonspecific binding ability of BSA was used for adsorption and sustained release of both rifampicn and 5-fluorouracil (5-FU). The helical structures of BSA were preserved to a large extent after modification and drug adsorption on BSA was confirmed via circular dichroism spectroscopy. Drugs adsorbed onto the conjugated formulation to a lesser extent than on BSA due to mPEG modification. The in vitro release of both rifampicin and 5-FU, however, indicated that BSA-mPEG can function as a drug carrier. Overall, the click reaction provided a convenient tool for the pegylation of BSA. The biological activity of the BSA-mPEG conjugates, including the drug transportation capacity and biocompatibility, were largely retained.  相似文献   

16.
Size exclusion chromatography (SEC) was used to determine the viscosity radii of equivalent spheres for proteins covalently grafted with poly(ethylene glycol) (PEG). The viscosity radius of such PEGylated proteins was found to depend on the molecular weight of the native protein and the total weight of grafted PEG but not on PEG molecular weight, or PEG-to-protein molar grafting ratio. Results suggest grafted PEG's form a dynamic layer over the surface of proteins. The geometry of this layer results in a surface area-to-volume ratio approximately equal to that of a randomly coiled PEG molecule of equivalent total molecular weight. Two simple methods are given to predict the viscosity radius of PEGylated proteins. Both methods accurately predicted (3% absolute error) the viscosity radii of various PEG-proteins produced using three native proteins, alpha-lactalbumin (14.2 kDa MW), beta-lactoglobulin dimer (37.4 kDa MW), and bovine serum albumin (66.7 kDa MW), three PEG reagents (2400, 5600, and 22500 MW), and molar grafting ratios of 0 to 8. Accurate viscosity radius prediction allows calculation of the distribution coefficient, K(av), for PEG-proteins in SEC. The suitability of a given SEC step for the analytical or preparative fractionation of different PEGylated protein mixtures may therefore be assessed mathematically. The methods and results offer insight to several factors related to the production, purification, and uses of PEGylated proteins.  相似文献   

17.
The retention and binding mechanisms in electrostatic interaction-based chromatography (ion-exchange chromatography) of PEGylated proteins (covalent attachment of polyethylene glycol chains to protein) were investigated using our previously developed model. Lysozyme and bovine serum albumin were chosen as model proteins. The retention volume of PEGylated proteins shifted to lower elution volumes with increasing PEG molecular weight compared with the non-modified (native) protein retention volume. However, PEGylation did not affect the number of binding sites appreciably. The enzyme activity of PEGylated lysozyme measured with a standard insoluble substrate in suspension decreased considerably, whereas the activity with a soluble small-molecule substrate did not drop significantly. These findings indicate that when a protein is mono-PEG-ylated, the binding site is not affected and the elution volume reduces due to the steric hindrance between PEGylated protein and ion-exchange ligand.  相似文献   

18.
In the present study, we demonstrated zeolites' potential contribution to establish a method for preparing successfully refolded and reassembled PEGylated protein nanoparticles without the use of protein denaturants through the proteins' reassembly process. At first, the PEGylated nanoparticles are disassembled into identical PEGylated protein subunits by means of protein denaturants, and then the denatured subunits are adsorbed to zeolites. After the complete removal of denaturants, high-molecular-weight poly(ethylene glycol) (PEG) molecules are added to a solution where the zeolites suspend. Consequently, the PEGylated proteins are gradually reassembled into nanoparticles because the subunits are desorbed from the zeolites by the steric hindrance of the added PEG molecules. The present study reveals that PEGylated encapsulin was reassembled and hollow encapsulin nanoparticles were obtained. The results clearly demonstrate the usefulness of zeolites as a tool for the successful refolding of PEGylated proteins and their reassembly with tertiary structures.  相似文献   

19.
Chemical modification of macromolecular affinity chromatography ligands with polyethylene glycol chains or “PEGylation” can potentially improve selectivity by sterically suppressing non‐specific binding interactions without sacrificing binding capacity. For a commercial protein A affinity media and with yeast extract (YE) and fetal bovine serum (FBS) serving as mock contaminants, we found that the ligand accounted for more than 90% of the media‐associated non‐specific binding, demonstrating an opportunity for improvement. The IgG static binding affinity of protein A mono‐PEGylated with 5.0 and 20.7 kDa poly(ethylene glycol) chains was found to be preserved using a biomolecular interaction screening platform. Similar in situ PEGylations of the commercial protein A media were conducted and the modified media was functionally characterized with IgG solutions spiked with YE and FBS. Ligand PEGylation reduced the mass of media‐associated contaminants by a factor of two to three or more. Curiously, we also found an increase of up to 15% in the average recovery of IgG on elution after PEGylation. Combined, these effects produced an order of magnitude increase in the IgG selectivity on average when spiked with YE and a two‐ to three‐fold increase when spiked with FBS relative to the commercial media. Dynamic binding capacity and mass‐transfer resistance measurements revealed a reduction in dynamic capacity attributed to a decrease in IgG effective pore diffusivity and possibly slower IgG association kinetics for the PEGylated protein A ligands. Ligand PEGylation is a viable approach to improving selectivity in affinity chromatography with macromolecular ligands. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1364–1379, 2014  相似文献   

20.
Protein physical and chemical properties can be altered by polymer interaction. The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many organic and polymer molecules. This study was designed to examine the interaction of HSA with poly(ethylene glycol) (PEG) in aqueous solution at physiological conditions. Fourier transform infrared, ultraviolet-visible, and CD spectroscopic methods were used to determine the polymer binding mode, the binding constant, and the effects of polymer complexation on protein secondary structure.The spectroscopic results showed that PEG is located along the polypeptide chains through H-bonding interactions with an overall affinity constant of K = 4.12 x 10(5) M(-1). The protein secondary structure showed no alterations at low PEG concentration (0.1 mM), whereas at high polymer content (1 mM), a reduction of alpha-helix from 59 (free HSA) to 53% and an increase of beta-turn from 11 (free HSA) to 22% occurred in the PEG-HSA complexes (infrared data). The CDSSTR program (CD data) also showed no major alterations of the protein secondary structure at low PEG concentrations (0.1 and 0.5 mM), while at high polymer content (1 mM), a major reduction of alpha-helix from 69 (free HSA) to 58% and an increase of beta-turn from 7 (free HSA) to 18% was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号