首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silks are highly expressed, secreted proteins that represent a substantial metabolic cost to the insects and spiders that produce them. Female spiders in the superfamily Araneoidea (the orb-spinning spiders and their close relatives) spin six different kinds of silk (three fibroins and three fibrous protein glues) that differ in amino acid content and protein structure. In addition to this diversity in silks produced by different glands, we found that individual spiders of the same species can spin dragline silks (drawn from the spider's ampullate gland) that vary in content as well. Freely foraging ARGIOPE: argentata (Araneae: Araneoidea), collected from 13 Caribbean islands, produced dragline silk that showed an inverse relationship between the amount of serine and glycine they contained. X-ray microdiffraction of the silks localized these differences to the amorphous regions of the protein that are thought to lend silks their elasticity. The crystalline regions of the proteins, which lend silks their strength, were unaffected. Laboratory experiments with ARGIOPE: keyserlingi suggested that variation in silk composition reflects the type of prey the spiders were fed but not the total amount of prey they received. Hence, it may be that the amino acid content (and perhaps the mechanical properties) of dragline silk spun by ARGIOPE: directly reflect the spiders' diet. The ability to vary silk composition and, possibly, function is particularly important for organisms that disperse broadly, such as Argiope, and that occupy diverse habitats with diverse populations of prey.  相似文献   

2.
Spider silks are characterized by remarkable diversity in their chemistry, structure and functions, ranging from orb web construction to adhesives and cocoons. These unique materials have prompted efforts to explore potential applications of spider silk equivalent to those of silkworm silks, which have undergone 5,000 years of domestication and have a variety of uses, from textiles to biomedical materials. Recent progress in genetic engineering of spider silks and the development of new chimeric spider silks with enhanced functions and specific characteristics have advanced spider silk technologies. Further progress in yields of expressed spider-silk proteins, in the control of self-assembly processes and in the selective exploration of material applications is anticipated in the future. The unique features of spider silks, the progress and challenges in the cloning and expression of these silks, environmentally triggered silk assembly and disassembly and the formation of fibers, films and novel chimeric composite materials from genetically engineered spider silks will be reviewed.  相似文献   

3.
Spiders spin high performance fibers with diverse biological functions and mechanical properties. Molecular and biochemical studies of spider prey wrapping silks have revealed the presence of the aciniform silk fibroin AcSp1-like. In our studies we demonstrate the presence of a second distinct polypeptide present within prey wrapping silk. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called MiSp1-like and demonstrate that its protein product is a constituent of prey wrap silks from the black widow spider, Latrodectus hesperus. BLAST searches of the NCBInr protein database using the amino acid sequence of MiSp1-like revealed similarity to the conserved C-terminal domain of silk family members. In particular, MiSp1-like showed the highest degree of sequence similarity to the nonrepetitive C-termini of published orb-weaver minor ampullate fibroin molecules. Analysis of the internal amino acid sequence of the black widow MiSp1-like revealed polyalanine stretches interrupted by glycine residues and glycine-alanine couplets within MiSp1-like as well as repeats of the heptameric sequence AGGYGQG. Real-time quantitative PCR analysis demonstrates that the MiSp1-like gene displays a minor ampullate gland-restricted pattern of expression. Furthermore, amino acid composition analysis, coupled with scanning electron microscopy of raw wrapping silk, supports the assertion that minor ampullate silks are important constituents of black widow spider prey wrap silk. Collectively, our findings provide direct molecular evidence for the involvement of minor ampullate fibroins in swathing silks and suggest composite materials play an important role in the wrap attack process for cob-weavers.  相似文献   

4.
Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks.  相似文献   

5.
蜘蛛丝作为一种具有优良机械性能的天然动物蛋白纤维,其特有的结构和机械性能与其生物学功能密切相关。由大壶状腺纺出的拖牵丝在蜘蛛的行走、建网、捕食、逃生、繁殖等多种生命活动中均发挥了重要的功能,其机械性能会受到多种内外因素相互作用的影响。本文对在不同体重、不同猎物饲养和不同营养状态3种条件下人工抽出的悦目金蛛(Argiope amoena)拖牵丝与其不同单丝间的力学性能进行了比较研究。结果表明,悦目金蛛拖牵丝的力学性能在组间、组内不同个体,以及同一个体不同丝纤维间变异都较大。随着蜘蛛个体的增大,蛛丝横截面直径逐渐增大,这会使得蛛丝的力学性能更好,便于作为救命索的拖牵丝在遇到危险时承受蜘蛛体重;蜘蛛在经过1个月的饥饿后,蛛丝在屈服点附近的力学性能并未发生显著变化,而断裂点应变和断裂能均显著减小,同时也表明无论对于作为救命索还是网丝,拖牵丝的弹性形变性能在与蛛丝相关的微观进化中要优先于塑性形变。这是蜘蛛在能量摄入受到限制时对拖牵丝的投入权衡的结果。  相似文献   

6.
Since thousands of years humans have utilized insect silks for their own benefit and comfort. The most famous example is the use of reeled silkworm silk from Bombyx mori to produce textiles. In contrast, despite the more promising properties of their silk, spiders have not been domesticated for large-scale or even industrial applications, since farming the spiders is not commercially viable due to their highly territorial and cannibalistic nature. Before spider silks can be copied or mimicked, not only the sequence of the underlying proteins but also their functions have to be resolved. Several attempts to recombinantly produce spider silks or spider silk mimics in various expression hosts have been reported previously. A new protein engineering approach, which combines synthetic repetitive silk sequences with authentic silk domains, reveals proteins that closely resemble silk proteins and that can be produced at high yields, which provides a basis for cost-efficient large scale production of spider silk-like proteins.  相似文献   

7.
8.
The mechanical properties of spider silks have diverged as spiders have diversely speciated. Because the main components of silks are proteins, it is valuable to investigate their sequences. However, silk sequences have been regarded as difficult information to analyze due to their imbalance and imperfect tandem repeats (ITR). Here, an in silico approach is applied to systemically analyze a group of silk sequences. It is found that every time new spider groups emerge, unique trimer motifs appear. These trimer motifs are used to find additional clues of evolution and to determine relationships with mechanical properties. For the first time, crucial evidence is provided that shows silk sequences coevolved with spider species and the mechanical properties of their fibers to adapt to new living environments. This novel approach can be used as a platform for analyzing other groups of ITR‐harboring proteins and to obtain information for the design of tailor‐made fibrous protein materials.  相似文献   

9.
《朊病毒》2013,7(4):154-161
Biomaterials, having evolved over millions of years, often exceed man?made materials in their properties. Spider silk is one outstanding fibrous biomaterial which consists almost entirely of large proteins. Silk fibers have tensile strengths comparable to steel and some silks are nearly as elastic as rubber on a weight to weight basis. In combining these two properties, silks reveal a toughness that is two to three times that of synthetic fibers like Nylon or Kevlar. Spider silk is also antimicrobial, hypoallergenic and completely biodegradable.

This article focuses on the structure?function relationship of the characterized highly repetitive spider silk spidroins and their conformational conversion from solution into fibers. Such knowedge is of crucial importance to understanding the intrinsic properties of spider silk and to get insight into the sophisticated assembly processes of silk proteins. This review further outlines recent progress in recombinant production of spider silk proteins and their assembly into distinct polymer materials as a basis for novel products.  相似文献   

10.
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion.Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands.Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] 9 and pyriform [produces attachment disc silk] 10. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.  相似文献   

11.
In the last two decades it was shown that plants have a great potential for production of specific heterologous proteins. But high cost and inefficient downstream processing are a main technical bottleneck for the broader use of plant‐based production technology especially for protein‐based products, for technical use as fibres or biodegradable plastics and also for medical applications. High‐performance fibres from recombinant spider silks are, therefore, a prominent example. Spiders developed rather different silk materials that are based on proteins. These spider silks show excellent properties in terms of elasticity and toughness. Natural spider silk proteins have a very high molecular weight, and it is precisely this property which is thought to give them their strength. Transgenic plants were generated to produce ELPylated recombinant spider silk derivatives. These fusion proteins were purified by Inverse Transition Cycling (ITC) and enzymatically multimerized with transglutaminase in vitro. Layers produced by casting monomers and multimers were characterized using atomic force microscopy (AFM) and AFM‐based nanoindentation. The layered multimers formed by mixing lysine‐ and glutamine‐tagged monomers were associated with the highest elastic penetration modulus.  相似文献   

12.
Aerial web-weaving spiders display a wide variety of foraging behaviors that can be tied to the evolution of one family of proteins, the silks. In some cases, the physical structure and mechanical properties of silks alone determine the ecology of spiders: the habitats in which they forage, the prey they capture and their subsequent reproductive success. Future studies that integrate research on the physical structure of silks, the molecular genetics of silk synthesis and the foraging ecology of spiders in primitive and derived phylogenetic groups could reveal how molecular and organismal processes interact in evolution.  相似文献   

13.
Behavioural and biomaterial coevolution in spider orb webs   总被引:1,自引:0,他引:1  
Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials—silks—are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co‐evolve to fine‐tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb‐weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable ‘sparser’ architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine‐tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin.  相似文献   

14.
Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2‐like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non‐web building, but a select few species build webs. We accordingly collected MA silk from two web‐building and six non‐web‐building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2‐like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web‐building and non‐web‐building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web‐building and non‐web‐building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2‐like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co‐evolution and the ecological implications of spider silk properties.  相似文献   

15.
Silk threads from spiders exhibit extraordinary mechanical properties, such as superior toughness and elasticity. Spider silks consist of several different large repetitive proteins that act as the basic materials responsible for these outstanding features. The production of spider silk protein variants in plants opens up new horizons in the production and functional investigation that enable the use of spider silks in innovative material development, nanotechnology and biomedicine in the future. This review summarizes and discusses production of spider silk protein variants in plants, especially with regards to plant expression systems, purification strategies, and characteristics of spider silk variants. Furthermore, the challenge of producing native-sized recombinant spidroins in planta is outlined, presenting three different strategies for achieving these high repetitive proteins with the help of non-repetitive C-terminal domains, crosslinking transglutaminase, and self-linking inteins. The potential of these fascinating proteins in medicine is also highlighted.  相似文献   

16.
The evolution of cryptic spider silk: a behavioral test   总被引:3,自引:2,他引:1  
Phylogenetic patterns of change in spider silk coloration provideinsight into the selective pressures directing evolution ofsilks. Trends toward evolution of silks with low reflectanceof ultraviolet (UV) light suggest that reduced UV reflectancemay be an adaptation to reduce visibility of webs to insectprey. However, a test of the visibility of primitive and derivedspider silks is lacking. Several genera of orb-weaving spidersinclude conspicuous designs of silk, called "stabilimenta,"at the center of their webs. Due to their large size, stabilimentapresent signals that insects can use to avoid webs. Unlikeother silks in the orb web, which reflect little UV light,evolutionarily derived stabilimentum silk retains a bright UV reflectance. But, unlike primitive silks, stabilimentum silkalso reflects large amounts of blue and green light. We comparedthe visibility of primitive tarantula silks and derived stabilimentumsilks to insects by using the ability of honey bees to learnto forage at targets of spider silk. We found that the uniquespectral properties of stabilimentum silk render it crypticto insects and that primitive silks are more visible to bees.Our findings support a hypothesis that the coloration of stabilimentumsilk is an adaptation to reduce the ability of insects to avoidwebs and that ancient biases in the color vision of insectshave acted upon the evolution of spider silk coloration throughsensory drive. But our findings question the emphasis on UVreflectance alone for visibility of spider silks to insects.  相似文献   

17.
《朊病毒》2013,7(4):145-153
Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi?liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross?linking by disulfide bonds may be important in the silks spun under water. The mechanism of long?term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue?type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin β?sheets interrupted with other structures such as α?helices but the silk proteins of certain sawflies have predominantly a collagen?like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement.  相似文献   

18.
19.
Orb-weaving spiders depend upon their two-dimensional silk traps to stop insects in mid flight. While the silks used to construct orb webs must be extremely tough to absorb the tremendous kinetic energy of insect prey, webs must also minimize the return of that energy to prey to prevent insects from bouncing out of oscillating webs. We therefore predict that the damping capacity of major ampullate spider silk, which forms the supporting frames and radial threads of orb webs, should be evolutionarily conserved among orb-weaving spiders. We test this prediction by comparing silk from six diverse species of orb spiders. Silk was taken directly from the radii of orb webs and a Nano Bionix test system was used either to sequentially extend the silk to 25% strain in 5% increments while relaxing it fully between each cycle, or to pull virgin silk samples to 15% strain. Damping capacity was then calculated as the percent difference in loading and unloading energies. Damping capacity increased after yield for all species and typically ranged from 40 to 50% within each cycle for sequentially pulled silk and from 50 to 70% for virgin samples. Lower damping at smaller strains may allow orb webs to withstand minor perturbations from wind and small prey while still retaining the ability to capture large insects. The similarity in damping capacity of silk from the radii spun by diverse spiders highlights the importance of energy absorption by silk for orb-weaving spiders.  相似文献   

20.
Silk has been used for centuries in the textile industry and as surgical sutures. In addition to its unique mechanical properties, silk possesses other properties, such as biocompatibility, biodegradability and ability to self-assemble, which make it an interesting material for biomedical applications. Although silk forms only fibers in nature, synthetic techniques can be used to control the processing of silk into different morphologies, such as scaffolds, films, hydrogels, microcapsules, and micro- and nanospheres. Moreover, the biotechnological production of silk proteins broadens the potential applications of silk. Synthetic silk genes have been designed. Genetic engineering enables modification of silk properties or the construction of a hybrid silk. Bioengineered hybrid silks consist of a silk sequence that self-assembles into the desired morphological structure and the sequence of a polypeptide that confers a function to the silk biomaterial. The functional domains can comprise binding sites for receptors, enzymes, drugs, metals or sugars, among others. Here, we review the current status of potential applications of silk biomaterials in the field of oncology with a focus on the generation of implantable, injectable and targeted drug delivery systems and the three-dimensional cancer models based on silk scaffolds for cancer research. However, the systems described could be applied in many biomedical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号