首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During cap-dependent translation of eukaryotic mRNAs, initiation factors interact with the 5′ cap to attract ribosomes. When animal viruses translate in a cap-independent fashion, ribosomes assemble upstream of initiation codons at internal ribosome entry sites (IRES). In contrast, many plant viral genomes do not contain 5′ ends with substantial IRES activity but instead have 3′ translational enhancers that function by an unknown mechanism. A 393-nucleotide (nt) region that includes the entire 3′ UTR of the Turnip crinkle virus (TCV) synergistically enhances translation of a reporter gene when associated with the TCV 5′ UTR. The major enhancer activity was mapped to an internal region of ~140 nt that partially overlaps with a 100-nt structural domain previously predicted to adopt a form with some resemblance to a tRNA, according to a recent study by J.C. McCormack and colleagues. The T-shaped structure binds to 80S ribosomes and 60S ribosomal subunits, and binding is more efficient in the absence of surrounding sequences and in the presence of a pseudoknot that mimics the tRNA-acceptor stem. Untranslated TCV satellite RNA satC, which contains the TCV 3′ end and 6-nt differences in the region corresponding to the T-shaped element, does not detectably bind to 80S ribosomes and is not predicted to form a comparable structure. Binding of the TCV T-shaped element by 80S ribosomes was unaffected by salt-washing, reduced in the presence of AcPhe-tRNA, which binds to the P-site, and enhanced binding of Phe-tRNA to the ribosome A site. Mutations that reduced translation in vivo had similar effects on ribosome binding in vitro. This strong correlation suggests that ribosome entry in the 3′ UTR is a key function of the 3′ translational enhancer of TCV and that the T-shaped element contains some tRNA-like properties.  相似文献   

2.
RNA病毒翻译调控元件—内部核糖体进入位点(IRES)   总被引:1,自引:0,他引:1  
真核生物大多数蛋白质合成采用了依赖帽子结构的翻译起始方式.但一组缺乏帽子构的RNA病毒的蛋白质合成起始是依赖其5′端非翻译区(untranslated region,UTR)翻译调控的顺式作用元件——内部核糖体进入位点(internal ribosome entry site, IRES).它 们能够在一些反式作用因子的辅助下,招募核糖体小亚基到病毒mRNA的翻译起始位点.前,依赖IRES元件翻译起始的RNA病毒在哺乳动物,无脊椎动物及植物中均有发现.因此,对RNA病毒IRES元件的深入研究,不仅有助于阐明相关疾病的发生机理,而且为工业应用和疾病治疗提供借鉴意义.本文对RNA病毒IRES元件发现、分类、结构与功能等作了综述.  相似文献   

3.
4.
The hepatitis C virus (HCV) genomic RNA contains an internal ribosome entry site (IRES) in its 5′ untranslated region, the structure of which is essential for viral protein translation. The IRES includes a predicted pseudoknot interaction near the AUG start codon, but the results of previous studies of its structure have been conflicting. Using mutational analysis coupled with activity and functional assays, we verified the importance of pseudoknot base pairings for IRES-mediated translation and, using 35 mutants, conducted a comprehensive study of the structural tolerance and functional contributions of the pseudoknot. Ribosomal toeprinting experiments show that the entirety of the pseudoknot element positions the initiation codon in the mRNA binding cleft of the 40S ribosomal subunit. Optimal spacing between the pseudoknot and the start site AUG resembles that between the Shine–Dalgarno sequence and the initiation codon in bacterial mRNAs. Finally, we validated the HCV IRES pseudoknot as a potential drug target using antisense 2′-OMe oligonucleotides.  相似文献   

5.
蛋白质翻译起始通常有两种机制,一是依赖帽结构的翻译,另一种是依赖5′非翻译区的内部核糖体进入位点(IRES).在后一种方式中,在某些IRES反式作用因子,如La蛋白、多聚嘧啶串结合蛋白1等的参与下,直接招募核糖体小亚基到mRNA的翻译起始位点,启始翻译.研究发现,参与细胞生长、分化、细胞周期进程、凋亡和压力调控的相关蛋白中通常含有IRES元件.基于功能,我们提出假说:转录激活因子1(ATF1)的5′-UTR可能具有IRES活性.为验证假说,首先构建了含全长ATF1 5′-UTR的双荧光素酶报告质粒|质粒转染结合报告酶活性分析显示,ATF1 5′-UTR在Bel7402、HCT-8和HEK293细胞中表现出不同的IRES活性|而此IRES活性与5′-UTR中的隐藏启动子无关.同时还发现,ATF1 5′-UTR在NIH3T3细胞中却没有IRES活性.与此结果相一致,Western印迹检测ATF1在这几种细胞系中的表达.结果显示,Bel7402、HCT 8和HEK293中ATF1蛋白质表达水平较高,而在NIH3T3中却极低. ATF1 5′-UTR的系列5′-删除突变及报告酶分析证明,ATF1 5′-UTR的完整性对其IRES活性大小发挥重要作用|其中5′端的204 bp序列对其IRES活性贡献较大. RNA-蛋白免疫共沉淀实验揭示,ATF1 5′-UTR可与La和PTBP1蛋白结合|抑制La和PTBP1蛋白质的表达,并可减低HEK293细胞中ATF1蛋白质表达水平.这些结果提示,La和PTBP1蛋白(两种ITAFs)为ATF1 5′-UTR发挥IRES活性所必需.总之,上述结果证明,ATF1 5′-UTR具有IRES活性,其活性发挥依赖与La和PTBP1蛋白的结合.上述发现为进一步研究La和PTBP1表达及亚细胞定位对ATF1 IRES调控机制的影响奠定了基础.  相似文献   

6.
Translation of hepatitis C virus (HCV) genomic RNA is directed by an internal ribosome entry site (IRES) in the 5′-untranslated region (5′-UTR), and the HCV 3′-UTR enhances IRES activity. Since the HCV 3′-UTR has a unique structure among 3′-UTRs, we checked possible communication between the 5′- and the 3′-UTR of HCV during translation using chimeric reporter RNAs. We show that translation directed by the HCV IRES and by the HCV-like IRES of porcine teschovirus (PTV) which belongs to a quite distinct family of viruses (picornaviruses) or by the EMCV IRES is also enhanced by the HCV 3′-UTR or by a poly(A)-tail in different cell types.  相似文献   

7.
Translation of the hepatitis C virus (HCV) genomic RNA initiates from an internal ribosome entry site (IRES) in its 5′ untranslated region and requires a minimal subset of translation initiation factors to occur, namely eukaryotic initiation factor (eIF) 2 and eIF3. Low-resolution structural information has revealed how the HCV IRES RNA binds human eIF3 and the 40S ribosomal subunit and positions the start codon for initiation. However, the exact nature of the interactions between the HCV IRES RNA and the translational machinery remains unknown. Using limited proteolysis and mass spectrometry, we show that distinct regions of human eIF3 are sufficient for binding to the HCV IRES RNA and the 40S subunit. Notably, the eIF3 subunit eIF3b is protected by HCV IRES RNA binding, yet is exposed in the complex when compared to subunits eIF3e, eIF3f, eIF3h, and eIF3l. Limited proteolysis reveals that eIF3 binding to the 40S ribosomal subunit occurs through many redundant interactions that can compensate for each other. These data suggest how the HCV IRES binds to specific regions of eIF3 to target the translational machinery to the viral genomic RNA and provide a framework for modeling the architecture of intact human eIF3.  相似文献   

8.
The cricket paralysis virus (CrPV) intergenic region (IGR) internal ribosome entry site (IRES) uses an unusual mechanism of initiating translation, whereby the IRES occupies the P-site of the ribosome and the initiating tRNA enters the A-site. In vitro experiments have demonstrated that the CrPV IGR IRES is able to bind purified ribosomes and form 80S complexes capable of synthesizing small peptides in the absence of any translation initiation factors. These results suggest that initiation by this IRES is factor-independent. To determine whether the IGR IRES functions in the absence of initiation factors in vivo, we assayed IGR IRES activity in various yeast strains harboring mutations in canonical translation initiation factors. We used a dicistronic reporter assay in yeast to determine whether the CrPV IGR IRES is able to promote translation sufficient to support growth in the presence of various deletions or mutations in translation initiation factors. Using this assay, we have previously shown that the CrPV IGR IRES functions efficiently in yeast when ternary complexes (eIF2•GTP•initiator tRNAmet) are reduced. Here, we demonstrate that the CrPV IGR IRES activity does not require the eukaryotic initiation factors eIF4G1 or eIF5B, and it is enhanced when eIF2B, the eIF3b subunit of eIF3, or eIF4E are impaired. Taken together, these data support a model in which the CrPV IGR IRES is capable of initiating protein synthesis in the absence of any initiation factors in vivo, and suggests that the CrPV IGR IRES initiates translation by directly recruiting the ribosomal subunits in vivo.  相似文献   

9.
以口蹄疫病毒(foot-and-mouth disease virus,FMDV)强毒China/99株牛舌水泡皮为材料,用RT-PCR法提取RNA及扩增目的cDNA,然后与pGEM-T Easy载体连接并转化JM109菌株,再经重组质粒电泳、PCR和EcoRI酶切鉴定.用DNAstar软件比较了内部核糖体进入位点(IRES)的序列差异,并用RNAdraw软件绘制和分析了该区段的二级结构.8株FMDV IRES核苷酸序列比较表明该区段较为保守,并对非保守区域进行了分析.二级结构分析表明,FMDV IRES至少有3种二级结构图形:第一型有5个结构域,与Pilipenko等报道的一致;第二和三型分别有6和11个结构域,与Pilipenko等报道的结果不同.无论FMDV IRES二级结构如何不同,但单链区大部分核苷酸序列或基序相同,如AACUCC、GAAA、CUUU、AGG、AACC、GUAA等.茎环柄部核苷酸对维持二级结构的空间构像具有十分重要的作用,环中或单链区序列(基序)在维持其功能方面具有很重要的作用,如GAAA和CUUU基序分别是三级结构的组件和嘧啶区结合蛋白的结合位点.  相似文献   

10.
DAP5/p97 (death-associated protein 5) is a member of the eukaryotic translation initiation factor 4G family. It functions as a scaffold protein promoting cap-independent translation of proteins. During apoptosis, DAP5/p97 is cleaved by caspases at position 792, yielding an 86-kDa C-terminal truncated isoform (DAP5/p86) that promotes translation of several mRNAs mediated by an internal ribosome entry site. In this study, we report the crystal structure of the C-terminal region of DAP5/p97 extending between amino acids 730 and 897. This structure consists of four HEAT-Repeats and is homologous to the C-terminal domain of eIF4GI, eIF5, and eIF2Bε. Unlike the other proteins, DAP5/p97 lacks electron density in the loop connecting α3 and α4, which harbors the caspase cleavage site. Moreover, we observe fewer interactions between these two helices. Thus, previous mapping of this site by mutation analysis is confirmed here by the resolved structure of the DAP5/p97 C-terminus. In addition, we identified the position of two conserved aromatic and acidic boxes in the structure of the DAP5/p97 C-terminus. The acidic residues in the two aromatic and acidic boxes form a continuous negatively charged patch, which is suggested to make specific interactions with other proteins such as eIF2β. The caspase cleavage of DAP5/p97 removes the subdomain carrying acidic residues in the AA-box motif, which may result in exposure of a hydrophobic surface. These intriguing structural differences between the two DAP5 isoforms suggest that they have different interaction partners and, subsequently, different functions.  相似文献   

11.
To investigate the mechanisms underlying regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation in Aplysia neurons, we have cloned the Aplysia homolog of the vertebrate eIF4E kinases, Mnk1 and -2. Aplysia Mnk shares many conserved regions with vertebrate Mnk, including putative eukaryotic initiation factor 4G binding regions, activation loop phosphorylation sites, and a carboxy-terminal anchoring site for MAP kinases. As expected, purified Aplysia Mnk phosphorylated Aplysia eIF4E at a conserved carboxy-terminal serine and over-expression of Aplysia Mnk in sensory neurons led to increased phosphorylation of endogenous eIF4E. Over-expression of Aplysia Mnk led to strong decreases in cap-dependent translation, while generally sparing internal ribosomal entry site (IRES)-dependent translation. However, decreases in cap-dependent translation seen after expression of Aplysia Mnk could only be partly explained by increases in eIF4E phosphorylation. In Aplysia sensory neurons, phosphorylation of eIF4E is reduced during intermediate memory formation. However, we found that this physiological regulation of eIF4E phosphorylation was independent of changes in Aplysia Mnk phosphorylation. We propose that changes in eIF4E phosphorylation in Aplysia neurons are a consequence of changes in cap-dependent translation that are independent of regulation of Aplysia Mnk.  相似文献   

12.
Protein synthesis is often regulated at the level of initiation of translation, making it a critical step. This regulation occurs by both the cis‐regulatory elements, which are located in the 5′‐ and 3′‐UTRs (untranslated regions), and trans‐acting factors. A breakdown in this regulation machinery can perturb cellular metabolism, leading to various physiological abnormalities. The highly structured UTRs, along with features such as GC‐richness, upstream open reading frames and internal ribosome entry sites, significantly influence the rate of translation of mRNAs. In this review, we discuss how changes in the cis‐regulatory sequences of the UTRs, for example, point mutations and truncations, influence expression of specific genes at the level of translation. Such modifications may tilt the physiological balance from healthy to diseased states, resulting in conditions such as hereditary thrombocythaemia, breast cancer, fragile X syndrome, bipolar affective disorder and Alzheimer's disease. This information tends to establish the crucial role of UTRs, perhaps as much as that of coding sequences, in health and disease.  相似文献   

13.
Caenorhabditis elegans is a powerful in vivo model in which transgenesis is highly developed. However, while the analysis of biological phenomena often require the expression of more than one protein of interest, no reliable tool exists to ensure efficient concomitant and equivalent expression of more than two polypeptides from a single promoter. We report the use of viral 2A peptides, which trigger a “ribosomal-skip” or “STOP&GO” mechanism during translation, to express multiple proteins from a single vector in C. elegans. Although none of the viruses known to infect C. elegans contain 2A-like sequences, our results show that 2A peptides allow the production of separate functional proteins in all cell types and at all developmental stages tested in the worm. In addition, we constructed a toolkit including a 2A-based polycistronic plasmid and reagents to generate 2A-tagged fosmids. 2A peptides constitute an important tool to ensure the delivery of multiple polypeptides in specific cells, enabling several novel applications such as the reconstitution of multi-subunit complexes.  相似文献   

14.
15.
This study describes a strategy to develop LNA-modified small interfering RNA (siRNAs) against the highly structured 5' UTR of coxsackievirus B3 (CVB-3), which is an attractive target site due to its high degree of conservation. Accessible sites were identified based on structural models and RNase H assays with DNA oligonucleotides. Subsequently, LNA gapmers, siRNAs, siLNAs and small internally segmented interfering RNA (sisiLNAs) were designed against sites, which were found to be accessible in the in vitro assays, and tested in reporter assays and experiments with the infectious virus. The best siLNA improved viability of infected cells by 92% and exerted good antiviral activity in plaque reduction assays.  相似文献   

16.
Heterotrimeric translation initiation factor (IF) a/eIF2 (archaeal/eukaryotic IF 2) is present in both Eukarya and Archaea. Despite strong structural similarity between a/eIF2 orthologs from the two domains of life, their functional relationship is obscure. Here, we show that aIF2 from Sulfolobus solfataricus can substitute for its mammalian counterpart in the reconstitution of eukaryotic 48S initiation complexes from purified components. aIF2 is able to correctly place the initiator Met-tRNAi into the P-site of the 40S ribosomal subunit and accompany the entire set of eukaryotic translation IFs in the process of cap-dependent scanning and AUG codon selection. However, it seems to be unable to participate in the following step of ribosomal subunit joining. In accordance with this, aIF2 inhibits rather than stimulates protein synthesis in mammalian cell-free system. The ability of recombinant aIF2 protein to direct ribosomal scanning suggests that some archaeal mRNAs may utilize this mechanism during translation initiation.  相似文献   

17.
The internal ribosome entry site within the intergenic region (IGR IRES) of the Dicistroviridae family mimics a tRNA to directly assemble 80 S ribosomes and initiate translation at a non-AUG codon from the ribosomal A-site. A comparison of IGR IRESs within this viral family reveals structural similarity but little sequence similarity. However, a few specific conserved elements exist, which likely have important roles in IRES function. In this study, we have generated a battery of mutations to characterize the role of a conserved loop (L1.1) region of the IGR IRES. Mutating specific nucleotides within the L1.1 region inhibited IGR IRES-mediated translation in rabbit reticulocyte lysates. By assaying different steps in IRES function, we found that the mutant L1.1 IRESs had reduced affinity for 80 S ribosomes but not 40 S subunits, indicating that the L1.1 region mediated either binding to preformed 80 S or 60 S joining. Furthermore, mutations in L1.1 altered the position of the ribosome on the mutant IRES, indicating that the tRNA-like anticodon/codon mimic within the ribosomal P-site is disrupted. Structural studies have revealed that the L1.1 region interacts with the L1 stalk of the 60 S subunit, which is similar to the interactions between the T-loop of the E-site tRNA and ribosomal protein rpL1. Our results demonstrate that the conserved L1.1 region directs multiple steps in IGR IRES-mediated translation including ribosome binding and positioning, which are functions that the E-site tRNA may normally mediate during translation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号