首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Asian long-horned beetle (ALB) Anoplophora glabripennis is a serious invasive forest pest in several countries, including the United States. Methods available to manage or eradicate this pest are extremely limited, but RNA interference (RNAi) technology is a potentially effective method to control ALB. In this study, we used sucrose feeding bioassay for oral delivery of double-strand RNA (dsRNA) to ALB larvae. 32P-labeled dsRNA orally delivered to ALB larvae using the sucrose droplet feeding method was processed to small interfering RNA. Feeding neonate larvae with dsRNA targeting genes coding for the inhibitor of apoptosis (IAP), vacuolar sorting protein SNF7 (SNF7), and snakeskin (SSK) induced knockdown of target genes and mortality. Feeding 2 µg of dsRNA per day for 3 days did not induce a significant decrease in the expression of target genes or mortality. However, feeding 5 or 10 µg of dsRNA per day for 3 days induced a significant decrease in the expression of target genes and 50–90% mortality. Interestingly, feeding 2.5 µg each of dsIAP plus dsSNF7, dsIAP plus dsSSK, or dsSNF7 plus dsSSK per day for 3 days induced a significant decrease in the expression of both target genes and approximately 80% mortality. Our findings demonstrate that orally delivered dsRNA induces target gene knockdown and mortality in ALB neonate larvae and RNAi technology may have the potential for effective ALB control.  相似文献   

2.
The southern green stink bug (SGSB, Nezara viridula) is an emerging polyphagous pest in many regions of the world. RNA interference (RNAi) is a valuable method for understanding gene function and holds great potential for pest management. However, RNAi efficiency is variable among insects and the differences in transport of double-stranded RNA (dsRNA) are one of the major factors that contribute to this variability. In this study, Cy3 labeled dsRNA was used to track the transport of dsRNA in SGSB tissues. Cy3_dsRNA was detected in the hemocytes, fat body (FB), epidermis, and midgut tissues at 24–72 hr after injection. Orally delivered Cy3_dsRNA or Cypher-5E labeled dsRNA was mostly detected in the midgut and a few signals were detected in parts of the FB and epidermis. Both injected and fed Cy3_dsRNA showed stronger signals in SGSB tissues when compared to Cy3_siRNA (small interfering RNA) or Cy3_shRNA (short hairpin RNA). dsRNA targeting the gene for a vacuolar-sorting protein, SNF7, induced higher knockdown of the target gene and greater SGSB mortality compared to siRNA or shRNA targeting this gene. 32P-labeled dsRNA injected into SGSB was processed into siRNA, but fed 32P-labeled dsRNA was not efficiently processed into siRNA. These data suggest that transport of orally delivered dsRNA across the midgut epithelium is not efficient in SGSB which may contribute to variable RNAi efficiency. Targeting genes expressed in the midgut rather than other tissues and using dsRNA instead of siRNA or shRNA would be more effective for RNAi-mediated control of this pest.  相似文献   

3.
In recent years, RNA interference (RNAi) has been validated as a viable approach for functional genetic studies in non‐model organisms. In this report we demonstrate the efficacy of RNAi in the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Miridae: Hemiptera). A L. lineolaris inhibitor of apoptosis gene (LlIAP) has been identified and cloned. The translated sequence encodes a 381 amino acid protein similar to other insect IAPs and contains two conserved baculovirus inhibitor of apoptosis protein repeat (BIR) domains. Microinjection of double stranded RNA (dsRNA) corresponding to two disparate portions of the gene resulted in decreased LlIAP mRNA quantities relative to controls. Both nymphs and adult specimens injected with IAP dsRNA exhibited significantly reduced lifespan compared with those injected with non‐insect dsRNA (eGFP). Thus, RNAi‐mediated knockdown of LlIAP expression has been correlated with a lethal phenotype in adults and nymphs.  相似文献   

4.
5.
RNA interference (RNAi) is a valuable method for understanding the gene function and holds great potential for insect pest management. While RNAi is efficient and systemic in coleopteran insects, RNAi is inefficient in lepidopteran insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda cells by formulating dsRNA with Cellfectin II (CFII) transfection reagent. The CFII formulated dsRNA was protected from degradation by endonucleases present in Sf9 cells conditioned medium, hemolymph and midgut lumen contents collected from the FAW larvae. Lipid formulated dsRNA also showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing Sf9 cells and tissues to CFII formulated dsRNA caused a significant knockdown of endogenous genes. CFII formulated dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation and mortality. Processing of dsRNA into siRNA was detected in Sf9 cells and Spodoptera frugiperda larvae treated with CFII conjugated 32P-UTP labeled dsGFP. Overall, the present study concluded that delivering dsRNA formulated with CFII transfection reagent helps dsRNA escapes from the endosomal accumulation and improved RNAi efficiency in the FAW cells and tissues.  相似文献   

6.
RNA interference (RNAi) has become an integral part of mainstream research due to its versatility and ease of use. However, the potential nontarget effects associated with double-stranded RNAs (dsRNA) are poorly understood. To explore this, we used dsRNAs targeting the inhibitor of apoptosis (iap) gene from nine insect species and assayed their possible nontarget effects. For each assay, we used a control (dsRNA targeting the gene coding for green fluorescent protein, GFP) and a species-specific dsRNA targeting nine iap genes in insect species to evaluate target gene knockdown efficiency, apoptosis phenotype in cells and mortality in insects. Our results revealed that dsIAP efficiently knocks down iap gene expression and induces apoptosis phenotype and mortality in target insect species. In contrast, no significant knockdown of the iap gene expression, apoptosis phenotypes, or mortality were detected in cell lines developed from nontarget insects or nontarget insects treated with dsIAPs. Interestingly, even among closely related insects such as stink bugs, Nezara viridula, Halyomorpha halys, and Murgantia histrionica, with substantial sequence similarity among iap genes from these insects, no significant nontarget effects of dsIAP were observed under the conditions tested. These data demonstrate no significant nontarget effects for dsIAPs and suggest that the threat of nontarget effects of RNAi technology may not be substantial.  相似文献   

7.
RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double‐strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase‐2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12–14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high‐efficiency determination of gene functions in this species.  相似文献   

8.
RNA interference (RNAi) has been widely employed as a useful alternative to study gene function in insects, including triatomine bugs. However, several aspects related to the RNAi mechanism and functioning are still unclear. The aim of this study is to investigate the persistence and the occurrence of systemic and parental RNAi in the triatomine bug Rhodnius prolixus. For such, the nitrophorins 1 to 4 (NP1-4), which are salivary hemeproteins, and the rhodniin, an intestinal protein, were used as targets for RNAi. The dsRNA for both molecules were injected separately into 3rd and 5th instar nymphs of R. prolixus and the knockdown (mRNA levels and phenotype) were progressively evaluated along several stages of the insect's life. We observed that the NP1-4 knockdown persisted for more than 7 months after the dsRNA injection, and at least 5 months in rhodniin knockdown, passing through various nymphal stages until the adult stage, without continuous input of dsRNA. The parental RNAi was successful from the dsRNA injection in 5th instar nymphs for both knockdown targets, when the RNAi effects (mRNA levels and phenotype) were observed at least in the 2nd instar nymphs of the F1 generation. However, the parental RNAi did not occur when the dsRNA was injected in the 3rd instars. The confirmation of the long persistence and parental transmission of RNAi in R. prolixus can improve and facilitate the utilization of this tool in insect functional genomic studies.  相似文献   

9.
RNA interference (RNAi) is a promising technology for the development of next-generation insect pest control products. Though RNAi is efficient and systemic in coleopteran insects, it is inefficient and variable in lepidopteron insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda by conjugating double-stranded RNA (dsRNA) with biodegradable chitosan (Chi). dsRNA conjugated with chitosan was protected from degradation by endonucleases present in Sf9 cell-conditioned medium, hemolymph, and midgut lumen contents collected from the FAW larvae. Chi–dsRNA complexes showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing chitosan formulated dsRNA in Sf9 cells and the tissues induced a significant knockdown of endogenous genes. Chi–dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation, and mortality. Processing of dsRNA into small interfering RNA was detected with chitosan-conjugated 32P-UTP-labeled ds green fluorescent protein in Sf9 cells and FAW larval tissues. Overall, these data suggest that dsRNA conjugated with chitosan helps dsRNA escape from the endosomes and improves RNAi efficiency in FAW cells and tissues.  相似文献   

10.
RNA interference (RNAi) is a powerful means to study functional genomics in insects. The delivery of dsRNA is a challenging step in the development of RNAi assay. Here, we describe a new delivery method to increase the effectiveness of RNAi in the Asian citrus psyllid Diaphorina citri. Bromophenol blue droplets were topically applied to fifth instar nymphs and adults on the ventral side of the thorax between the three pairs of legs. In addition to video recordings that showed sucking of the bromophenol blue by the stylets, dissected guts turned blue indicating that the uptake was through feeding. Thus, we called the method topical feeding. We targeted the abnormal wing disc gene (awd), also called nucleoside diphosphate kinase (NDPK), as a reporter gene to prove the uptake of dsRNA via this method of delivery. Our results showed that dsRNA‐awd caused reduction of awd expression and nymph mortality. Survival and lifespan of adults emerged from treated nymphs and treated adults were affected. Silencing awd caused wing malformation in the adults emerged from treated nymphs. Topical feeding as a delivery of dsRNA is highly efficient for both nymphs and adults. The described method could be used to increase the efficiency of RNAi in D. citri and other sap piercing‐sucking hemipterans.  相似文献   

11.
12.
A bstract The tawny crazy ant(Nylanderia fulva)is a new invasive pest in the United States.At present,its management mainly relies on the use of synthetic insecticides,which are generally ineffective at producing lasting control of the pest,necessitating alternative environmentally friendly measures.In this study,we evaluated the feasibility of gene silencing to control this ant species.Six housekeeping genes encoding actin(NfActin),coatomer subunit β (NfCOPP),arginine kinase(NfArgK),and V-type proton ATPase subunits A(NfvATPaseA),B(NfvATPaseB)and E(NfvATPaseE)were cloned.Phylogenetic analysis revealed high sequence similarity to homologs from other ant species,particularly the Florida carpenter ant(Camponotus floridanus).To silence these genes,vector L4440 was used to generate six specific RNAi constructs for bacterial expression.Heat-inactivated,dsRNA-expressing Escherichia coli were incorporated into artificial diet.Worker ants exhibited reduced endogenous gene expression after feeding on such diet for 9 d.However,only ingestion of dsRNAs of NfCOPfi(a gene involved in protein trafficking)and NfArgK(a cellular energy reserve regulatory gene in invertebrates)caused modest but significantly higher ant mortality than the control.These results suggest that bacterially expressed dsRNA can be orally delivered to ant cells as a mean to target its vulnerabilities.Improved efficacy is necessary for the RNAi-based approach to be useful in tawny crazy ant management.  相似文献   

13.
14.
15.
16.
RNA interference (RNAi) is a useful reverse genetics tool for investigation of gene function as well as for practical applications in many fields including medicine and agriculture. RNAi works very well in coleopteran insects including the Colorado potato beetle (CPB), Leptinotarsa decemlineata. We used a cell line (Lepd-SL1) developed from CPB to identify genes that play key roles in RNAi. We screened 50 genes with potential functions in RNAi by exposing Lepd-SL1 cells to dsRNA targeting one of the potential RNAi pathway genes followed by incubation with dsRNA targeting inhibitor of apoptosis (IAP, silencing of this gene induces apoptosis). Out of 50 genes tested, silencing of 29 genes showed an effect on RNAi. Silencing of five genes (Argonaute-1, Argonaute-2a, Argonaute-2b, Aubergine and V-ATPase 16 kDa subunit 1, Vha16) blocked RNAi suggesting that these genes are essential for functioning of RNAi in Lepd-SL1 cells. Interestingly, Argonaute-1 and Aubergine which are known to function in miRNA and piRNA pathways respectively are also critical to siRNA pathway. Using 32P labeled dsRNA, we showed that these miRNA and piRNA Argonautes but not Argonaute-2 are required for processing of dsRNA to siRNA. Transfection of pIZT/V5 constructs containing these five genes into Sf9 cells (the cells where RNAi does not work well) showed that expression of all genes tested, except the Argonaute-2a, improved RNAi in these cells. Results from Vha16 gene silencing and bafilomycin-A1 treatment suggest that endosomal escape plays an important role in dsRNA-mediated RNAi in Lepd-SL1 cells.  相似文献   

17.
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important pest of citrus. In addition, D. citri is the vector of Huanglongbing, a destructive disease in citrus, also known as citrus greening disease caused by Candidatus Liberibacter asiaticus. Huanglongbing causes huge losses for citrus industries. Insecticide application for D. citri is the major strategy to prevent disease spread. The heavy use of insecticides causes development of insecticide resistance. We used RNA interference (RNAi) to silence genes implicated in pesticide resistance in order to increase the susceptibility. The activity of dsRNA to reduce the expression of carboxyesterases including esterases FE4 (EstFE4) and acetylcholinesterases (AChe) in D. citri was investigated. The dsRNA was applied topically to the fourth and fifth instars of nymphs. We targeted several EstFE4 and AChe genes using dsRNA against a consensus sequence for each of them. Five concentrations (25, 50, 75, 100, 125 ng/μl) from both dsRNAs were used. The treatments with the dsRNA caused concentration dependent nymph mortality. The highest gene expression levels of both AChe and EstFE4 were found in the fourth and fifth nymphal instars. Gene expression analysis showed that AChe genes were downregulated in emerged adults from dsRNA‐AChe‐treated nymphs compared to controls. However, EstFE4 genes were not affected. In the same manner, treatment with dsRNA‐EstFE4 reduced expression level of EstFE4 genes in emerged adults from treated nymphs, but did not affect the expression of AChe genes. In the era of environmentally friendly control strategies, RNAi is a new promising venue to reduce pesticide applications.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号