首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A PCR test for avian malaria in Hawaiian birds   总被引:1,自引:0,他引:1  
The decline of native Hawaiian forest birds since European contact is attributed to factors ranging from habitat destruction to interactions with introduced species. Remaining populations of Hawaiian honeycreepers (Fringillidae: Drepanidinae) are most abundant and diverse in high elevation refuges above the normal range of disease-carrying mosquitoes. Challenge experiments suggest that honeycreepers are highly susceptible to avian malaria (Plasmodium sp.) but resistance exists in some species. In order to detect low levels of malarial infection and quantify prevalence of Plasmodium in high elevation natural populations of Hawaiian birds, a polymerase chain reaction (PCR) based diagnostic test was developed that identifies rRNA genes of Plasmodium in avian blood samples. Quantitative competitive PCR (QC-PCR) experiments indicate that the detection limit of our test is an order of magnitude greater than that reported for human malaria DNA blot tests. Compared with standard histological methods, the PCR test detected a higher prevalence of diseased birds at mid-elevations. Malaria was detected in three species of native birds living in a high elevation wildlife refuge on the island of Hawaii and in four species from Maui. Our results show that avian malaria is more widespread in Hawaiian forests than previously thought, a finding that has important conservation implications for these threatened species.  相似文献   

2.
Sensitive techniques for the detection of Plasmodium (Aconoidasida: Plasmodiidae) sporozoites in field‐collected malaria vectors are essential for the correct assessment of risk for malaria transmission. A real‐time polymerase chain reaction (RT‐PCR) protocol targeting Plasmodium mtDNA proved to be much more sensitive in detecting sporozoites in mosquitoes than the widely used enzyme‐linked immunosorbent assay targeting Plasmodium circumsporozoite protein (CSP‐ELISA). However, because of the relatively high costs associated with equipment and reagents, RT‐PCRs are mostly used to assess the outcomes of experimental infections in the frame of research experiments, rather than in routine monitoring of mosquito infection in the field. The present authors developed a novel mtDNA‐based nested PCR protocol, modified from a loop‐mediated isothermal amplification (LAMP) assay for Plasmodium recognition in human blood samples, and compared its performance with that of routinely used CSP‐ELISAs in field‐collected Anopheles coluzzii (Diptera: Culicidae) samples. The nested PCR showed 1.4‐fold higher sensitivity than the CSP‐ELISA. However, nested PCR results obtained in two laboratories and in different replicates within the same laboratory were not 100% consistent, probably because the copy number of amplifiable Plasmodium mtDNA was close in some specimens to the threshold of nested PCR sensitivity. This implies that Plasmodium‐positive specimens should be confirmed by a second nested PCR to avoid false positives. Overall, the results emphasize the need to use molecular approaches to obtain accurate estimates of the actual level of Plasmodium circulation within malaria vector populations.  相似文献   

3.
Parasites are major effectors of natural selection and also play a role in sexual selection processes. Haemosporidian blood parasites are common in vertebrates and have been shown to vary in their effects depending on both the parasite and host species, on the host trait investigated as well as on host condition and stage of infection. Here we investigated infection of adult barn swallows Hirundo rustica by Plasmodium, Leucocytozoon and Haemoproteus species during the chronic stage of infection and the consequences for host fitness traits. Prevalence was higher than 10% only for Plasmodium. Chronic stage infection by Plasmodium was associated with reduced female breeding success, but did not affect breeding dates. Infection did not affect the expression of male secondary sexual traits (tail length and melanin‐based plumage coloration), but was associated with paler coloration of females. Finally, we found a negative effect of infection by Plasmodium on feather growth rate in older but not in yearling individuals. Because feathers are moulted during wintering in sub‐Saharan Africa where infection of barn swallows by Plasmodium occurs, our results suggest that male secondary sexual traits have little potential to reveal acute‐stage infection whereas plumage coloration of females may advertise their infection status. In addition, these results suggest that infection by Plasmodium can influence the course of plumage moult. Thus, our results add to the observations of negative effects of haemosporidian infection on fitness traits in birds and provides evidence that these effects can vary among traits and in relation to age and sex.  相似文献   

4.
Currently, malaria is still one of the major public health problems commonly caused by the four Plasmodium species. The similar symptoms of malaria and the COVID-19 epidemic of fever or fatigue lead to frequent misdiagnosis. The disadvantages of existing detection methods, such as time-consuming, costly, complicated operation, need for experienced technicians, and indistinguishable typing, lead to difficulties in meeting the clinical requirements of rapid, easy, and accurate typing of common Plasmodium species. In this study, we developed and optimized a universal two-dimensional labelled probe-mediated melting curve analysis (UP-MCA) assay based on multiplex and asymmetric PCR for rapid and accurate typing of five Plasmodium species, including novel human Plasmodium, Plasmodium knowlesi (Pk), in a single closed tube following genome extraction. The assay showed a limit of detection (LOD) of 10 copies per reaction and could accurately distinguish Plasmodium species from intra-plasmodium and other pathogens. Additionally, we proposed and validated different methods of fluorescence quenching and tag design for probes that are suitable for UP-MCA assays. Moreover, the clinical performance of the Plasmodium UP-MCA assay using a base-quenched universal probe was evaluated using 226 samples and showed a sensitivity of 100% (164/164) and specificity of 100% (62/62) at a 99% confidence interval, with the microscopy method as the gold standard. In summary, the UP-MCA assay showed excellent sensitivity, specificity, and accuracy for genotyping Plasmodium species spp. Additionally, it facilitates convenient and rapid Plasmodium detection in routine clinical practice and has great potential for clinical translation.  相似文献   

5.
The vast majority of malaria mortality is attributed to one parasite species: Plasmodium falciparum. Asexual replication of the parasite within the red blood cell is responsible for the pathology of the disease. In Plasmodium, the endoplasmic reticulum (ER) is a central hub for protein folding and trafficking as well as stress response pathways. In this study, we tested the role of an uncharacterised ER protein, PfGRP170, in regulating these key functions by generating conditional mutants. Our data show that PfGRP170 localises to the ER and is essential for asexual growth, specifically required for proper development of schizonts. PfGRP170 is essential for surviving heat shock, suggesting a critical role in cellular stress response. The data demonstrate that PfGRP170 interacts with the Plasmodium orthologue of the ER chaperone, BiP. Finally, we found that loss of PfGRP170 function leads to the activation of the Plasmodium eIF2α kinase, PK4, suggesting a specific role for this protein in this parasite stress response pathway.  相似文献   

6.
Avian malaria (Plasmodium spp.) has been implicated in the decline of avian populations in the Hawaiian Islands and it is generally agreed that geographically isolated and immunologically naïve bird populations are particularly vulnerable to the pathogenic effects of invasive malaria parasites. In order to assess the potential disease risk of malaria to the avifauna of Socorro Island, México, we surveyed for Plasmodium isolates from 1,300 resident field‐caught mosquitoes. Most of them were identified as Aedes (Ochlerotatus) taeniorhynchus (Wiedemann, 1821), which were abundant in the salt marshes. We also collected Culex quinquefasciatus Say, 1823 close to human dwellings. Mitochondrial ND5 and COII gene sequences of Ae. taeniorhynchus were analyzed and compared to corresponding sequences of mosquitoes of the Galápagos Islands, Latin America, and the North American mainland. Aedes lineages from Socorro Island clustered most closely with a lineage from the continental U.S. Plasmodium spp. DNA was isolated from both species of mosquitoes. From 38 positive pools, we isolated 11 distinct mitochondrial Cytb lineages of Plasmodium spp. Seven of the Plasmodium lineages represent previously documented avian infective strains while four were new lineages. Our results confirm a potential risk for the spread of avian malaria and underscore the need to monitor both the mosquito and avian populations as a necessary conservation measure to protect endangered bird species on Socorro Island.  相似文献   

7.
Abstract. Anopheles (Anopheles) neomaculipalpus Curry (Diptera: Culicidae) collected by human landing catches and light traps in southern Venezuela were assayed by enzyme-linked immunosorbent assay (ELISA) for detection of Plasmodium circumsporozoite (CS) protein. A total of 356 An. neomaculipalpus were collected, of which three (0.84%) were positive for P. vivax, two for the variant 247 and one for the variant 210. The overall sporozoite rate in An. neomaculipalpus was similar to that for the principal vector An. (Nyssorhynchus) darlingi Root (0.82%) and higher than in An. (Nys.) marajoara Galvão & Damasceno (0.27%). This is the first report of An. neomaculipalpus naturally infected with Plasmodium parasites in Venezuela.  相似文献   

8.
《Autophagy》2013,9(2):269-284
Plasmodium parasites successfully colonize different habitats within mammals and mosquitoes, and adaptation to various environments is accompanied by changes in their organelle composition and size. Previously, we observed that during hepatocyte infection, Plasmodium discards organelles involved in invasion and expands those implicated in biosynthetic pathways. We hypothesized that this process is regulated by autophagy. Plasmodium spp. possess a rudimentary set of known autophagy-related proteins that includes the ortholog of yeast Atg8. In this study, we analyzed the activity of the ATG8-conjugation pathway over the course of the lifecycle of Plasmodium falciparum and during the liver stage of Plasmodium berghei. We engineered a transgenic P. falciparum strain expressing mCherry-PfATG8. These transgenic parasites expressed mCherry-PfATG8 in human hepatocytes and erythrocytes, and in the midgut and salivary glands of Anopheles mosquitoes. In all observed stages, mCherry-PfATG8 was localized to tubular structures. Our EM and colocalization studies done in P. berghei showed the association of PbATG8 on the limiting membranes of the endosymbiont-derived plastid-like organelle known as the apicoplast. Interestingly, during parasite replication in hepatocytes, the association of PbATG8 with the apicoplast increases as this organelle expands in size. PbATG3, PbATG7 and PbATG8 are cotranscribed in all parasitic stages. Molecular analysis of PbATG8 and PbATG3 revealed a novel mechanism of interaction compared with that observed for other orthologs. This is further supported by the inability of Plasmodium ATG8 to functionally complement atg8Δ yeast or localize to autophagosomes in starved mammalian cells. Altogether, these data suggests a unique role for the ATG8-conjugation system in Plasmodium parasites.  相似文献   

9.
Plasmodium, the aetiological agent of malaria, imposes a substantial public health burden on human society and one that is likely to deteriorate. Hitherto, the recent Darwinian medicine movement has promoted the important role evolutionary biology can play in issues of public health. Recasting the malaria parasite two‐host life cycle within an evolutionary framework has generated considerable insight into how the parasite has adapted to life within both vertebrate and insect hosts. Coupled with the rapid advances in the molecular basis to host–parasite interactions, exploration of the evolutionary ecology of Plasmodium will enable identification of key steps in the life cycle and highlight fruitful avenues of research for developing malaria control strategies. In addition, elucidating the extent to which Plasmodium can respond to short‐ and long‐term changes in selection pressures, i.e. its adaptive capacity, is even more crucial in predicting how the burden of malaria will alter with our rapidly evolving ecology.  相似文献   

10.
Global warming threatens to increase the spread and prevalence of mosquito‐transmitted diseases. Certain pathogens may be carried by migratory birds and transmitted to local mosquito populations. Mosquitoes were collected in the northern Philippines during bird migration seasons to detect avian malaria parasites as well as for the identification of potential vector species and the estimation of infections among local mosquito populations. We used the nested PCR to detect the avian malaria species. Culex vishnui (47.6%) was the most abundant species collected and Cx. tritaeniorhynchus (13.8%) was the second most abundant. Avian Plasmodium parasites were found in eight mosquito species, for which the infection rates were between 0.5% and 6.2%. The six Plasmodium genetic lineages found in this study included P. juxtanucleare ‐GALLUS02, Tacy7 (Donana04), CXBIT01, Plasmodium species LIN2 New Zealand, and two unclassified lineages. The potential mosquito vectors for avian Plasmodium parasites in the Philippines were Cq. crassipes, Cx. fuscocephala, Cx. quinquefasciatus, Cx. sitiens, Cx. vishnui, and Ma. Uniformis; two major genetic lineages, P. juxtanucleare and Tacy7, were identified.  相似文献   

11.
Reptile and bird hosts of malaria parasites (Plasmodium) have nucleated erythrocytes. Infected blood thus contains a mix of abundant host and scant parasite DNA which has prevented identification of Plasmodium microsatellites. We developed a protocol for isolation of microsatellite markers for Plasmodium mexicanum, a parasite of lizards. The ATT repeat was common in the genome of P. mexicanum, but most (87%) of these repeats were exceptionally long (50–206 + repeats). Seven microsatellite markers with polymerase chain reaction primers are described. The protocol should allow discovery of microsatellites of malaria parasites (with AT‐rich genomes) infecting bird and reptile hosts.  相似文献   

12.
A major obstacle impeding malaria research is the lack of an in vitro system capable of supporting infection through the entire liver stage cycle of the parasite, including that of the dormant forms known as hypnozoites. Primary hepatocytes lose their liver specific functions in long‐term in vitro culture. The malaria parasite Plasmodium initiates infection in hepatocyte. This corresponds to the first step of clinically silent infection and development of malaria parasite Plasmodium in the liver. Thus, the liver stage is an ideal target for development of novel antimalarial interventions and vaccines. However, drug discovery against Plasmodium liver stage is severely hampered by the poor understanding of host–parasite interactions during the liver stage infection and development. In this study, tandem mass tag labeling based quantitative proteomic analysis is performed in simian primary hepatocytes cultured in three different systems of susceptibility to Plasmodium infection. The results display potential candidate molecular markers, including asialoglycoprotein receptor, apolipoproteins, squalene synthase, and scavenger receptor B1 (SR‐BI) that facilitate productive infection and full development in relapsing Plasmodium species. The identification of these candidate proteins required for constructive infection and development of hepatic malaria liver stages paves the way to explore them as therapeutic targets.  相似文献   

13.
This study documents the presence ofPlasmodium spp. in landbirds ofcentral Polynesia. Blood samples collectedfrom eight native and introduced species fromthe island of Tutuila, American Samoa wereevaluated for the presence of Plasmodiumspp. by nested rDNA PCR, serology and/ormicroscopy. A total of 111/188 birds (59%)screened by nested PCR were positive. Detection of Plasmodium spp. was verifiedby nucleotide sequence comparisons of partial18S ribosomal RNA and TRAP(thrombospondin-related anonymous protein)genes using phylogenetic analyses. All samplesscreened by immunoblot to detect antibodiesthat cross-react with Hawaiian isolates of Plasmodium relictum (153) were negative. Lack of cross-reactivity is probably due toantigenic differences between the Hawaiian andSamoan Plasmodium isolates. Similarly,all samples examined by microscopy (214) werenegative. The fact that malaria is present,but not detectable by blood smear evaluation isconsistent with low peripheral parasitemiacharacteristic of chronic infections. Highprevalence of apparently chronic infections,the relative stability of the native land birdcommunities, and the presence of mosquitovectors which are considered endemic andcapable of transmitting avian Plasmodia,suggest that these parasites are indigenous toSamoa and have a long coevolutionary historywith their hosts.  相似文献   

14.
Background information. The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo‐erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. Results. In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo‐erythrocytic schizogony in vitro, leading to impaired parasite maturation. Conclusions. Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red‐blood‐cell‐infective merozoites.  相似文献   

15.
Parasites can have strong effects on host life-history and behaviour, and result in changes in host population dynamics and community structure. We applied a PCR-based technique and examined prevalence of malaria and related haemosporidian parasites in two arctic breeding shorebird species: the Semipalmated Sandpiper (Calidris pusilla) and the Pectoral Sandpiper (C. melanotos). During the non-breeding season, Semipalmated Sandpipers inhabit coastal marine habitats, whereas Pectoral Sandpipers are found in inland areas. In accordance with the hypothesis that the risk of parasite infection is higher in a species wintering in freshwater areas, we found Plasmodium sp. infection during the breeding season only in Pectoral Sandpipers, whereas Semipalmated Sandpipers were parasite free. However, even in Pectoral Sandpipers sampled in the arctic, prevalence of malaria parasites was very low (<3% of individuals, n = 114). Overall, three different Plasmodium sp. lineages were found, one of which has never been described before.  相似文献   

16.
17.
CD4+ T cells play critical roles in protection against the blood stage of malarial infection; however, their uncontrolled activation can be harmful to the host. In this study, in which rodent models of Plasmodium parasites were used, the expression of inhibitory receptors on activated CD4+ T cells and their cytokine production was compared with their expression in a bacterial and another protozoan infection. CD4+ T cells from mice infected with P. yoelii 17XL, P yoelii 17XNL, P. chabaudi, P. vinckei and P. berghei expressed the inhibitory receptors, PD‐1 and LAG‐3, as early as 6 days after infection, whereas those from either Listeria monocytogenes‐ or Leishmania major‐infected mice did not. In response to T‐cell receptor stimulation, CD4+ T cells from mice infected with all the pathogens under study produced high concentrations of IFN‐γ. IL‐2 production was reduced in mice infected with Plasmodium species, but not in those infected with Listeria or Leishmania. In vitro blockade of the interaction between PD‐1 and its ligands resulted in increased IFN‐γ production in response to Plasmodium antigens, implying that PD‐1 expressed on activated CD4+ T cells actively inhibits T cell immune responses. Studies using Myd88?/?, Trif?/? and Irf3?/? mice showed that induction of these CD4+ T cells and their ability to produce cytokines is largely independent of TLR signaling. These studies suggest that expression of the inhibitory receptors PD‐1 and LAG‐3 on CD4+ T cells and their reduced IL‐2 production are common characteristic features of Plasmodium infection.
  相似文献   

18.
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle‐like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake byP. falciparum‐infected erythrocytes shows that at R and S stages, a time‐increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time‐increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.  相似文献   

19.
Many studies have used the avian hemosporidians (Leucocytozoon, Plasmodium, and Hemoproteus) to test hypotheses of host–parasite co‐evolution, yet documented health and survival consequences of these blood parasites vary among studies and generalizations about their pathogenicity are debatable. In general, the negative effects of the hemosporidians are likely to be greatest during acute infections of young birds, yet most previous studies in wild passerines have examined chronic effects in adults. Here, we evaluated responses of nestling American crows (Corvus brachyrhynchos) to acute infection (prevalence and burden), as well as its short‐ and long‐term survival consequences. We used panel of nine hematological and biochemical parameters that are regularly used to evaluate the health of domestic animals, including leukocyte profiles, hematocrit, and plasma proteins. We assessed the effects of infection on survival in a mark‐recapture framework. Overall, 56% of crows (= 321 samples) were infected by at least one of the three genera. Infections by all genera were associated with elevated plasma proteins and globulins, which could indicate an adaptive immune response. However, only Plasmodium infections were associated with low hematocrit (anemia) and lower fledging success, possibly mediated by the negative effect of low hematocrit values on body condition. Moreover, early Plasmodium infection (<40 days of age) had long‐term survival implications: it was associated with lower apparent survival probability within 3 years after fledging. These results suggest that young crows mounted an adaptive immune response to all three genera. Short‐ and long‐term pathological effects, however, were only apparent with Plasmodium infections.  相似文献   

20.
Wild great apes are widely infected with a number of malaria parasites (Plasmodium spp.). Yet, nothing is known about the biology of these infections in the wild. Using faecal samples collected from wild chimpanzees, we investigated the effect of age on Plasmodium spp. detection rates. The data show a strong association between age and malaria parasite positivity, with significantly lower detection rates in adults. This suggests that, as in humans, individuals reaching adulthood have mounted an effective protective immunity against malaria parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号