首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of a biocatalyst to tolerate furan inhibitors present in hemicellulose hydrolysates is important for the production of renewable chemicals. This study shows EMFR9, a furfural-tolerant mutant of ethanologenic E. coli LY180, has also acquired tolerance to 5-hydroxymethyl furfural (5-HMF). The mechanism of action of 5-HMF and furfural appear similar. Furan tolerance results primarily from lower expression of yqhD and dkgA, two furan reductases with a low Km for NADPH. Furan tolerance was also increased by adding plasmids encoding a NADPH/NADH transhydrogenase (pntAB). Together, these results support the hypothesis that the NADPH-dependent reduction of furans by YqhD and DkgA inhibits growth by competing with biosynthesis for this limiting cofactor.  相似文献   

2.
Expression arrays were used to identify 4 putative oxidoreductases that were upregulated (>3-fold) by furfural (15 mM, 15 min). Plasmid expression of one (ucpA) increased furan tolerance in ethanologenic strain LY180 and wild-type strain W. Deleting ucpA decreased furfural tolerance. Although the mechanism remains unknown, the cryptic ucpA gene is now associated with a phenotype: furan resistance.  相似文献   

3.
4.
5.
Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters. Each mutant contained a single polyamine transporter gene that was upregulated over 100-fold (microarrays) compared to that in the parent LY180, as well as a mutation that silenced the expression of yqhD. Based on these genetic changes, furfural tolerance was substantially reconstructed in the parent, LY180. Deletion of potE in EMFR9 lowered furfural tolerance to that of the parent. Deletion of potE and puuP in LY180 also decreased furfural tolerance, indicating functional importance of the native genes. Of the 8 polyamine transporters (18 genes) cloned and tested, half were beneficial for furfural tolerance (PotE, PuuP, PlaP, and PotABCD). Supplementing AM1 mineral salts medium with individual polyamines (agmatine, putrescine, and cadaverine) also increased furfural tolerance but to a smaller extent. In pH-controlled fermentations, polyamine transporter plasmids were shown to promote the metabolism of furfural and substantially reduce the time required to complete xylose fermentation. This increase in furfural tolerance is proposed to result from polyamine binding to negatively charged cellular constituents such as nucleic acids and phospholipids, providing protection from damage by furfural.  相似文献   

6.
The addition of reduced sulfur compounds (thiosulfate, cysteine, sodium hydrosulfite, and sodium metabisulfite) increased growth and fermentation of dilute acid hydrolysate of sugarcane bagasse by ethanologenic Escherichia coli (strains LY180, EMFR9, and MM160). With sodium metabisulfite (0.5 mM), toxicity was sufficiently reduced that slurries of pretreated biomass (10% dry weight including fiber and solubles) could be fermented by E. coli strain MM160 without solid-liquid separation or cleanup of sugars. A 6-h liquefaction step was added to improve mixing. Sodium metabisulfite also caused spectral changes at wavelengths corresponding to furfural and soluble products from lignin. Glucose and cellobiose were rapidly metabolized. Xylose utilization was improved by sodium metabisulfite but remained incomplete after 144 h. The overall ethanol yield for this liquefaction plus simultaneous saccharification and co-fermentation process was 0.20 g ethanol/g bagasse dry weight, 250 L/tonne (61 gal/US ton).  相似文献   

7.
8.
Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 gl–1 ethanol from 120 gl–1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.  相似文献   

9.
Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors   总被引:1,自引:0,他引:1  
One major barrier to the economic conversion of biomass to ethanol is inhibitory compounds generated during biomass pretreatment using dilute acid hydrolysis. Major inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) inhibit yeast growth and subsequent fermentation. The ethanologenic yeast Saccharomyces cerevisiae demonstrated a dose-dependant inhibition by the inhibitors and has the potential to transform furfural and HMF into less toxic compounds of furfuryl alcohol and 2,5-bis-hydroxymethylfuran (also termed as furan-2,5-dimethanol (FDM)), respectively. For a sustainable and cost-competitive biomass-to-ethanol industry, it is important to develop more tolerant yeast strains that can, in situ, detoxify the inhibitors and produce ethanol. This study summarizes current knowledge and our understanding of the inhibitors furfural and HMF and discusses metabolic conversion pathways of the inhibitors and the yeast genomic expression response to inhibitor stress. Unlike laboratory strains, gene expression response of the ethanologenic yeast to furfural and HMF was not transient, but a continued dynamic process involving multiple genes at the genome level. This suggests that during the lag phase, ethanologenic yeasts undergo a genomic adaptation process in response to the inhibitors. The findings to date provide a strong foundation for future studies on genomic adaptation and manipulation of yeast to aid more robust strain design and development.The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.  相似文献   

10.
Lignocellulosic biomass is an appealing feedstock for the production of biorenewable fuels and chemicals, and thermochemical processing is a promising method for depolymerizing it into sugars. However, trace compounds in this pyrolytic sugar syrup are inhibitory to microbial biocatalysts. This study demonstrates that hydrophobic inhibitors damage the cell membrane of ethanologenic Escherichia coli KO11+lgk. Adaptive evolution was employed to identify design strategies for improving pyrolytic sugar tolerance and utilization. Characterization of the resulting evolved strain indicates that increased resistance to the membrane-damaging effects of the pyrolytic sugars can be attributed to a glutamine to leucine mutation at position 29 of carbon storage regulator CsrA. This single amino acid change is sufficient for decreasing EPS protein production and increasing membrane integrity when exposed to pyrolytic sugars.  相似文献   

11.
Due to its excellent capability to ferment five-carbon sugars, Escherichia coli has been considered one of the platform organisms to be engineered for production of cellulosic ethanol. Nevertheless, genetically engineered ethanologenic E. coli lacks the essential trait of alcohol tolerance. Development of ethanol tolerance is required for cost-effective ethanol fermentation. In this study, we improved alcohol tolerance of a nontransgenic E. coli KC01 (ldhA pflB ackA frdBC pdhR::pflBp6-aceEF-lpd) through adaptive evolution. During ~350 generations of adaptive evolution, a gradually increased concentration of ethanol was used as a selection pressure to enrich ethanol-tolerant mutants. The evolved mutant, E. coli SZ470, was able to grow anaerobically at 40 g l−1 ethanol, a twofold improvement over parent KC01. When compared with KC01 for small-scale (500 ml) xylose (50 g l−1) fermentation, SZ470 achieved 67% higher cell mass, 48% faster volumetric ethanol productivity, and 50% shorter time to complete fermentation with ethanol titer of 23.5 g l−1 and yield of 94%. These results demonstrate that an industry-oriented nontransgenic E. coli strain could be developed through incremental improvements of desired traits by a combination of molecular biology and traditional microbiology techniques.  相似文献   

12.
Pretreatment of lignocellulose biomass for biofuel production generates inhibitory compounds that interfere with microbial growth and subsequent fermentation. Remediation of the inhibitors by current physical, chemical, and biological abatement means is economically impractical, and overcoming the inhibitory effects of lignocellulose hydrolysate poses a significant technical challenge for lower-cost cellulosic ethanol production. Development of tolerant ethanologenic yeast strains has demonstrated the potential of in situ detoxification for numerous aldehyde inhibitors derived from lignocellulose biomass pretreatment and conversion. In the last decade, significant progress has been made in understanding mechanisms of yeast tolerance for tolerant strain development. Enriched genetic backgrounds, enhanced expression, interplays, and global integration of many key genes enable yeast tolerance. Reprogrammed pathways support yeast functions to withstand the inhibitor stress, detoxify the toxic compounds, maintain energy and redox balance, and complete active metabolism for ethanol fermentation. Complex gene interactions and regulatory networks as well as co-regulation are well recognized as involved in yeast adaptation and tolerance. This review presents our current knowledge on mechanisms of the inhibitor detoxification based on molecular studies and genomic-based approaches. Our improved understanding of yeast tolerance and in situ detoxification provide insight into phenotype-genotype relationships, dissection of tolerance mechanisms, and strategies for more tolerant strain development for biofuels applications.  相似文献   

13.

Background  

A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14) derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDC Zm and ADH Zm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis). It is suggested that this behavior might be due to lineage differences between E. coli W and C.  相似文献   

14.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   

15.
A major challenge in producing chemicals and biofuels is to increase the tolerance of the host organism to toxic products or byproducts. An Escherichia coli strain with superior ethanol and more generally alcohol tolerance was identified by screening a library constructed by randomly integrating Lactobacillus plantarum genomic DNA fragments into the E. coli chromosome via Cre-lox recombination. Sequencing identified the inserted DNA fragment as the murA2 gene and its upstream intergenic 973-bp sequence, both coded on the negative genomic DNA strand. Overexpression of this murA2 gene and its upstream 973-bp sequence significantly enhanced ethanol tolerance in both E. coli EC100 and wild type E. coli MG1655 strains by 4.1-fold and 2.0-fold compared to control strains, respectively. Tolerance to n-butanol and i-butanol in E. coli MG1655 was increased by 1.85-fold and 1.91-fold, respectively. We show that the intergenic 973-bp sequence contains a native promoter for the murA2 gene along with a long 5′ UTR (286 nt) on the negative strand, while a noncoding, small RNA, named MurA2S, is expressed off the positive strand. MurA2S is expressed in E. coli and may interact with murA2, but it does not affect murA2’s ability to enhance alcohol tolerance in E. coli. Overexpression of murA2 with its upstream region in the ethanologenic E. coli KO11 strain significantly improved ethanol production in cultures that simulate the industrial Melle-Boinot fermentation process.  相似文献   

16.
Crude glycerol obtained as a by-product of biodiesel production is a reliable feedstock with the potential to be converted into reduced chemicals with high yields. It has been previously shown that ethanol is the primary product of glycerol fermentation by Escherichia coli. However, few efforts were made to enhance this conversion by means of the expression of heterologous genes with the potential to improve glycerol transport or metabolism. In this study, a fosmid-based metagenomic library constructed from an anaerobic reactor purge sludge was screened for genetic elements that promote the use and fermentation of crude glycerol by E. coli. One clone was selected based on its improved growth rate on this feedstock. The corresponding fosmid, named G1, was fully sequenced (41 kbp long) and the gene responsible for the observed phenotype was pinpointed by in vitro insertion mutagenesis. Ethanol production from both pure and crude glycerol was evaluated using the parental G1 clone harboring the ethanologenic plasmid pLOI297 or the industrial strain LY180 complemented with G1. In mineral salts media containing 50 % (v/v) pure glycerol, ethanol concentrations increased two-fold on average when G1 was present in the cells reaching up to 20 g/L after 24 h fermentation. Similar fermentation experiments were done using crude instead of pure glycerol. With an initial OD620 of 8.0, final ethanol concentrations after 24 h were much higher reaching 67 and 75 g/L with LY180 cells carrying the control fosmid or the G1 fosmid, respectively. This translates into a specific ethanol production rate of 0.39 g h?1 OD?1 L?1.  相似文献   

17.
Summary Fermentation of an enzymatic hydrolyzate of ammonia fiber explosion (AFEX) pretreated corn fiber (containing a mixture of different sugars including glucose, xylose, arabinose, and galactose) by genetically-engineered Escherichia coli strain SL40 and KO11 and Klebsiella oxytoca strain P2 was investigated under pH-controlled conditions. Both E. coli strains (SL40 and KO11) efficiently utilized most of the sugars contained in the hydrolyzate and produced a maximum of 26.6 and 27.1 g/l ethanol, respectively, equivalent to 90 and 92% of the theoretical yield. Very little difference was observed in cell growth and ethanol production between fermentations of the enzymatic hydrolyzate and mixtures of pure sugars, simulating the hydrolyzate. These results confirm the fermentability of the AFEX-treated corn fiber hydrolyzate by ethanologenic E. coli. K.oxytoca strain P2, on the other hand, showed comparatively poor growth and ethanol production (maximum 20 g/l) from both enzymatic hydrolyzate and simulated sugar mixtures under the same fermentation conditions.  相似文献   

18.
Hexose and pentose sugars from phosphoric acid pretreated sugarcane bagasse were co-fermented to ethanol in a single vessel (SScF), eliminating process steps for solid-liquid separation and sugar cleanup. An initial liquefaction step (L) with cellulase was included to improve mixing and saccharification (L + SScF), analogous to a corn ethanol process. Fermentation was enabled by the development of a hydrolysate-resistant mutant of Escherichia coli LY180, designated MM160. Strain MM160 was more resistant than the parent to inhibitors (furfural, 5-hydroxymethylfurfural, and acetate) formed during pretreatment. Bagasse slurries containing 10% and 14% dry weight (fiber plus solubles) were tested using pretreatment temperatures of 160-190 °C (1% phosphoric acid, 10 min). Enzymatic saccharification and inhibitor production both increased with pretreatment temperature. The highest titer (30 g/L ethanol) and yield (0.21 g ethanol/g bagasse dry weight) were obtained after incubation for 122 h using 14% dry weight slurries of pretreated bagasse (180 °C).  相似文献   

19.
The inexpensive production of sugars from lignocellulose is an essential step for the use of biomass to produce fuel ethanol. Olive cake is an abundant by-product of the olive oil industry and represents a potentially significant lignocellulosic source for bioethanol production in the Mediterranean basin. Furthermore, converting olive cake to ethanol could add further value to olive production. In the present study, olive cake was evaluated as a feedstock for ethanol production. To this end, the lignocellulosic component of the olive cake was dilute-acid pretreated at a 13.5% olive-cake loading with 1.75% (w/v) sulfuric acid and heating at 160°C for 10 min. This was followed by chemical elimination of fermentation inhibitors. Soluble sugars resulting from the pretreatment process were fermented using E. coli FBR5, a strain engineered to selectively produce ethanol. 8.1 g of ethanol/L was obtained from hydrolysates containing 18.1 g of soluble sugars. Increasing the pretreatment temperature to 180°C resulted in failed fermentations, presumably due to inhibitory by-products released during pretreatment.  相似文献   

20.
Furfural and 5-hydroxymethylfurfural (HMF) are representative inhibitors generated from biomass pretreatment using dilute acid hydrolysis that interfere with yeast growth and subsequent fermentation. Few yeast strains tolerant to inhibitors are available. In this study, we report a tolerant strain, Saccharomyces cerevisiae NRRL Y-50049, which has enhanced biotransformation ability to convert furfural to furan methanol (FM), HMF to furan di-methanol (FDM), and produce a normal yield of ethanol. Our recent identification of HMF and development of protocol to synthesize the HMF metabolic conversion product FDM allowed studies on fermentation metabolic kinetics in the presence of HMF and furfural. Individual gene-encoding enzymes possessing aldehyde reduction activities demonstrated cofactor preference for NADH or NADPH. However, protein extract from whole yeast cells showed equally strong aldehyde reduction activities coupled with either cofactor. Deletion of a single candidate gene did not affect yeast growth in the presence of the inhibitors. Our results suggest that detoxification of furfural and HMF by the ethanologenic yeast S. cerevisiae strain Y-50049 likely involves multiple gene mediated NAD(P)H-dependent aldehyde reduction. Conversion pathways of furfural and HMF relevant to glycolysis and ethanol production were refined based on our findings in this study. The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号