首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
McElwee J  Bubb K  Thomas JH 《Aging cell》2003,2(2):111-121
  相似文献   

2.
In Caenorhabditis elegans, the insulin/IGF pathway participates in the decision to initiate dauer development. Dauer is a diapause stage that is triggered by environmental stresses, such as a lack of nutrients. Insulin/IGF receptor mutants arrest constitutively in dauer, an effect that can be suppressed by mutations in other elements of the insulin/IGF pathway or by a reduction in the activity of the nuclear hormone receptor daf‐12. We have isolated a pkc‐1 mutant that acts as a novel suppressor of the dauer phenotypes caused by insulin/IGF receptor mutations. Interactions between insulin/IGF mutants and the pkc‐1 suppressor mutant are similar to those described for daf‐12 or the DAF‐12 coregulator din‐1. Moreover, we show that the expression of the DAF‐12 target daf‐9, which is normally elevated upon a reduction in insulin/IGF receptor activity, is suppressed in a pkc‐1 mutant background, suggesting that pkc‐1 could link the daf‐12 and insulin/IGF pathways. pkc‐1 has been implicated in the regulation of peptide neurosecretion in C. elegans. Although we demonstrate that pkc‐1 expression in the nervous system regulates dauer formation, our results suggest that the requirement for pkc‐1 in neurosecretion is independent of its role in modulating insulin/IGF signalling. pkc‐1 belongs to the novel protein kinase C (nPKC) family, members of which have been implicated in insulin resistance and diabetes in mammals, suggesting a conserved role for pkc‐1 in the regulation of the insulin/IGF pathway.  相似文献   

3.
Chen D  Pan KZ  Palter JE  Kapahi P 《Aging cell》2007,6(4):525-533
The antagonistic pleiotropy theory of aging proposes that aging takes place because natural selection favors genes that confer benefit early on life at the cost of deterioration later in life. This theory predicts that genes that impact development would play a key role in shaping adult lifespan. To better understand the link between development and adult lifespan, we examined the genes previously known to be essential for development. From a pool of 57 genes that cause developmental arrest after inhibition using RNA interference, we have identified 24 genes that extend lifespan in Caenorhabditis elegans when inactivated during adulthood. Many of these genes are involved in regulation of mRNA translation and mitochondrial functions. Genetic epistasis experiments indicate that the mechanisms of lifespan extension by inactivating the identified genes may be different from those of the insulin/insulin-like growth factor 1 (IGF-1) and dietary restriction pathways. Inhibition of many of these genes also results in increased stress resistance and decreased fecundity, suggesting that they may mediate the trade-offs between somatic maintenance and reproduction. We have isolated novel lifespan-extension genes, which may help understand the intrinsic link between organism development and adult lifespan.  相似文献   

4.
Valproic acid extends Caenorhabditis elegans lifespan   总被引:1,自引:0,他引:1  
Aging is an important biological phenomenon and a major contributor to human disease and disability, but no drugs have been demonstrated to delay human aging. Caenorhabditis elegans is a valuable model for studies of animal aging, and the analysis of drugs that extend the lifespan of this animal can elucidate mechanisms of aging and might lead to treatments for age-related disease. By testing drugs that are Food and Drug Administration approved for human use, we discovered that the mood stabilizer and anticonvulsant valproic acid (VA) extended C. elegans lifespan. VA also delayed age-related declines of body movement, indicating that VA delays aging. Valproic acid is a small carboxylic acid that is the most frequently prescribed anticonvulsant drug in humans. A structure-activity analysis demonstrated that the related compound valpromide also extends lifespan. Valproic acid treatment may modulate the insulin/IGF-1 growth factor signaling pathway, because VA promoted dauer larvae formation and DAF-16 nuclear localization. To investigate the mechanism of action of VA in delaying aging, we analyzed the effects of combining VA with other compounds that extend the lifespan of C. elegans. Combined treatment of animals with VA and the heterocyclic anticonvulsant trimethadione caused a lifespan extension that was significantly greater than treatment with either of these drugs alone. These data suggest that the mechanism of action of VA is distinct from that of trimethadione, and demonstrate that lifespan-extending drugs can be combined to produce additive effects.  相似文献   

5.
Over a century ago, the zoologist Emile Maupas first identified the nematode, Rhabditis elegans, in the soil in Algiers. Subsequent work and phylogenic studies renamed the species Caenorhabditis elegans or more commonly referred to as C. elegans; (Caeno meaning recent; rhabditis meaning rod; elegans meaning nice). However, it was not until 1963, when Sydney Brenner, already successful from his work on DNA, RNA, and the genetic code, suggested the future of biological research lay in model organisms. Brenner believed that biological research required a model system that could grow in vast quantities in the lab, were cheap to maintain and had a simple body plan, and he chose the nematode C. elegans to fulfill such a role. Since that time, C. elegans has emerged as one of the premiere model systems for aging research. This paper reviews some initial identification of mutants with altered lifespan with a focus on genetics and then discusses advantages and disadvantages for using C. elegans as a model system to understand human aging. This review focuses on molecular genetics aspects of this model organism.  相似文献   

6.
Nanji M  Hopper NA  Gems D 《Aging cell》2005,4(5):235-245
The DAF-2 insulin/insulin-like growth factor 1 (IGF-1) receptor signals via a phosphatidylinositol 3-kinase (PI3K) pathway to control dauer larva formation and adult longevity in Caenorhabditis elegans. Yet epistasis analysis suggests signal bifurcation downstream of DAF-2. We have used epistasis analysis to test whether the Ras pathway (which plays a role in signaling from mammalian insulin receptors) acts downstream of DAF-2. We find that an activated Ras mutation, let-60(n1046gf), weakly suppresses constitutive dauer diapause in daf-2 and age-1 (PI3K) mutants. Moreover, increased Ras pathway signaling partially suppresses the daf-2 mutant feeding defect, while reduced Ras pathway signaling enhances it. By contrast, activated Ras extends the longevity induced by mutation of daf-2, while reduced Ras pathway signaling partially suppresses it. Thus, Ras pathway signaling appears to act with insulin/IGF-1 signaling during larval development, but against it during aging.  相似文献   

7.
8.
Crawford D  Libina N  Kenyon C 《Aging cell》2007,6(5):715-721
Dietary restriction extends lifespan and inhibits reproduction in many species. In Caenorhabditis elegans, inhibiting reproduction by germline removal extends lifespan. Therefore, we asked whether the effect of dietary restriction on lifespan might proceed via changes in the activity of the germline. We found that dietary restriction could increase the lifespan of animals lacking the entire reproductive system. Thus, dietary restriction can extend lifespan independently of any reproductive input. However, dietary restriction produced little or no increase in the long lifespan of animals that lack germ cells. Thus, germline removal and dietary restriction may potentially activate lifespan-extending pathways that ultimately converge on the same downstream longevity mechanisms. In well-fed animals, the somatic reproductive tissues are generally completely required for germline removal to extend lifespan. We found that this was not the case in animals subjected to dietary restriction. In addition, in these animals, loss of the germline could either further lengthen lifespan or shorten lifespan, depending on the genetic background. Thus, nutrient levels play an important role in determining how the reproductive system influences longevity.  相似文献   

9.
The small nematode C. elegans is characterized by developing through a highly coordinated, reproducible cell lineage that serves as the basis of many studies focusing on the development of multi-lineage organisms. Indeed, the reproducible cell lineage enables discovery of developmental defects that occur in even a single cell. Only recently has attention been focused on how these animals modify their genetically programmed cell lineages to adapt to altered environments. Here, we summarize the current understanding of how C. elegans responds to food deprivation by adapting their developmental program in order to conserve energy. In particular, we highlight the AMPK-mediated and insulin-like growth factor signaling pathways that are the principal regulators of induced cell cycle quiescence.  相似文献   

10.
Much of the recent interest in aging research is due to the discovery of genes in a variety of model organisms that appear to modulate aging. A large amount of research has focused on the use of such long-lived mutants to examine the fundamental causes of aging. While model organisms do offer many advantages for studying aging, it also critical to consider the limitations of these systems. In particular, ectothermic (poikilothermic) organisms can tolerate a much larger metabolic depression than humans. Thus, considering only chronological longevity when assaying for long-lived mutants provides a limited perspective on the mechanisms by which longevity is increased. In order to provide true insight into the aging process additional physiological processes, such as metabolic rate, must also be assayed. This is especially true in the nematode Caenorhabditis elegans, which can naturally enter into a metabolically reduced state in which it survives many times longer than its usual lifetime. Currently it is seen as controversial if long-lived C. elegans mutants retain normal metabolic function. Resolving this issue requires accurately measuring the metabolic rate of C. elegans under conditions that minimize environmental stress. Additionally, the relatively small size of C. elegans requires the use of sensitive methodologies when determining metabolic rates. Several studies indicating that long-lived C. elegans mutants have normal metabolic rates may be flawed due to the use of inappropriate measurement conditions and techniques. Comparisons of metabolic rate between long-lived and wild-type C. elegans under more optimized conditions indicate that the extended longevity of at least some long-lived C. elegans mutants may be due to a reduction in metabolic rate, rather than an alteration of a metabolically independent genetic mechanism specific to aging.  相似文献   

11.
The phenomenon of RNA-mediated interference (RNAi) was first discovered in the nematode Caenorhabditis elegans, in which introduction of double-stranded RNA causes specific inactivation of genes with corresponding sequences. Technical advances in RNAi methodology and the availability of the complete genome sequence have enabled the high-throughput, genome-wide RNAi analysis of this organism. Several groups have used large-scale RNAi to systematically examine every C. elegans gene for knock-down phenotypes, providing basal information to be mined in more detailed studies. Now, in addition to functional genomic RNAi analyses, high-throughput RNAi is also routinely used for rapid, genome-wide screens for genes involved in specific biological processes. The integration of high-throughput RNAi experiments with other large-scale data, such as DNA microarrays and protein-protein interaction maps, enhances the speed and reliability of such screens. The accumulation of RNAi phenotype data dramatically accelerates our understanding of this organism at the genetic level.  相似文献   

12.
13.
Recently, nine Caenorhabditis elegans genes, grouped into two pathways/clusters, were found to be implicated in healthspan in C. elegans and their homologues in humans, based on literature curation, WormBase data mining and bioinformatics analyses. Here, we further validated these genes experimentally in C. elegans. We downregulated the nine genes via RNA interference (RNAi), and their effects on physical function (locomotion in a swim assay) and on physiological function (survival after heat stress) were analysed in aged nematodes. Swim performance was negatively affected by the downregulation of acox-1.1, pept-1, pak-2, gsk-3 and C25G6.3 in worms with advanced age (twelfth day of adulthood) and heat stress resistance was decreased by RNAi targeting of acox-1.1, daf-22, cat-4, pig-1, pak-2, gsk-3 and C25G6.3 in moderately (seventh day of adulthood) or advanced aged nematodes. Only one gene, sad-1, could not be linked to a health-related function in C. elegans with the bioassays we selected. Thus, most of the healthspan genes could be re-confirmed by health measurements in old worms.  相似文献   

14.
细胞极性对于细胞的多样性起着很重要的作用。发动蛋白是一个大的GTP酶,作用于胞吞作用和肌动蛋白的动力学过程。C.elegans中发动蛋白的同源基因dyn-1起着维持早期细胞极性的功能。我们对C.elegans中dyn-1基因进行了克隆,并构建到表达载体和RNAi载体中。经IPTG诱导表达得到了约90 kDa的DYN-1融合蛋白。同时,利用RNAi方法研究了dyn-1基因沉默后对三种线虫虫株N2、daf-2(e1370)和daf-16(e1038)寿命的影响。C.elegans在喂食dyn-1 RNAi食物后寿命明显缩短,也会导致严重的不育和胚胎致死。  相似文献   

15.
16.
Over the last two centuries, there has been a significant increase in average lifespan expectancy in the developed world. One unambiguous clinical implication of getting older is the risk of experiencing age-related diseases including various cancers, dementia, type-2 diabetes, cataracts and osteoporosis. Historically, the ageing process and its consequences were thought to be intractable. However, over the last two decades or so, a wealth of empirical data has been generated which demonstrates that longevity in model organisms can be extended through the manipulation of individual genes. In particular, many pathological conditions associated with the ageing process in model organisms, and importantly conserved from nematodes to humans, are attenuated in long-lived genetic mutants. For example, several long-lived genetic mouse models show attenuation in age-related cognitive decline, adiposity, cancer and glucose intolerance. Therefore, these long-lived mice enjoy a longer period without suffering the various sequelae of ageing. The greatest challenge in the biology of ageing is to now identify the mechanisms underlying increased healthy lifespan in these model organisms. Given that the elderly are making up an increasingly greater proportion of society, this focused approach in model organisms should help identify tractable interventions that can ultimately be translated to humans.  相似文献   

17.
Molecular genetics in lower organisms has allowed the elucidation of pathways that modulate the aging process. In certain instances, evolutionarily conserved genes and pathways have been shown to regulate lifespan in mammals as well. Many gene products known to affect lifespan are intimately involved in the control of energy metabolism, including the fuel sensor AMP-activated protein kinase (AMPK). We have shown previously that over-expression of an AMPK alpha subunit in Caenorhabditis elegans, designated aak-2, increases lifespan. Here we show the interaction of aak-2 with other pathways known to control aging in worms. Lifespan extension caused by daf-2/insulin-like signaling mutations was highly dependent on aak-2, as was the lifespan extension caused by over-expression of the deacetylase, sir-2.1. Similarly, there was partial requirement for aak-2 in lifespan extension by mitochondrial mutations (isp-1 and clk-1). Conversely, aak-2 was not required for lifespan extension in mutants lacking germline stem cells (glp-1) or mutants of the eating response (eat-2). These results show that aging is controlled by overlapping but distinct pathways and that AMPK/aak-2 represents a node in a network of evolutionarily conserved biochemical pathways that control aging.  相似文献   

18.
Gill MS 《Aging cell》2006,5(1):23-30
Studies in the nematode Caenorhabditis elegans have been instrumental in defining genetic pathways that are involved in modulating lifespan. Multiple processes such as endocrine signaling, nutritional sensing and mitochondrial function play a role in determining lifespan in the worm and these mechanisms appear to be conserved across species. These discoveries have identified a range of novel targets for pharmacological manipulation of lifespan and it is likely that the nematode model will now prove useful in the discovery of compounds that slow aging. This review will focus on the endocrine targets for intervention in aging and the use of C. elegans as a system for high throughput screens of compounds for their effects on aging.  相似文献   

19.
High glucose reduced the egg-laying rate of the nematode Caenorhabditis elegans and was dependent on serotonergic signaling. Antidiabetic drugs of the biguanide and thiazolidine classes ameliorated the detrimental effect of glucose on egg-laying rate, suggesting the possibility that this quick and easy assay system may be applicable to whole-animal screening for novel antidiabetic drugs, at least, of these classes.  相似文献   

20.
The cell cycles in C. elegans are tightly controlled but appear to use the same regulators found in other organisms. Four homologues of the dual-specificity phosphatase Cdc25 are present in the C. elegans genome. In our study, we have characterized a deletion mutant for one of these orthologues. We show that embryonic defects are absent in cdc-25.1 homozygous mutants, presumably because of maternally contributed CDC-25.1 product. These embryos hatch and develop into sterile adults. The adults do not appear to have any somatic defects. The sterility results from inadequate germline proliferation. Germline precursors divide slowly and produce abnormally sized daughter cells. Only three to four rounds of germ-cell division occur before they die during the L3 and L4 larval stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号