首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A locally isolated Gram negative bacterium, Cupriavidus sp. USMAA9-39 was able to produce various types of biodegradable polyesters through a two-step cultivation process. These are copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)]. These polymers were synthesized by this bacterium when grown with a combination of some carbon sources. The biosynthesis of P(3HB-co-4HB) was achieved by using carbon sources such as γ-butyrolactone or 1,4-butanediol or by a combination of oleic acid with either γ-butyrolactone or 1,4-butanediol. Meanwhile, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced using 1-pentanol or valeric acid or by a combination of oleic acid with either 1-pentanol or valeric acid. When γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol were used as mixed carbon sources, P(3HB-co-3HV-co-4HB) terpolymer were produced. The presence of 3HB, 3HV or/and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

2.
A one-step cultivation process for the production of biodegradable polymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] by Cupriavidus sp. USMAA2-4 was carried out using various carbon sources. It was found that Cupriavidus sp. USMAA2-4 could produce approximately 44 wt.% copolymer of P(3HB-co-4HB) with 27 mol% 4HB composition when the combination of oleic acid and 1,4-butanediol are used as carbon sources in 60 h cultivation. The manipulation of carbon-to-nitrogen ratio (C/N) resulted in the increase of dry cell weight, PHA content as well as 4HB composition. A new strategy of introducing oleic acid and 1,4-butanediol together and separately at different concentration demonstrated different yield in PHA content ranging from 47 to 58 wt.%. The molecular weight obtained was 234 kDa (by adding 1,4-butanediol and oleic acid together) and 212 kDa (by adding 1,4-butanediol separately). The copolymer of P(3HB-co-4HB) produced by Cupriavidus sp. USMAA2-4 was detected statistically as a random copolymer when analysed by nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

3.
Polyhydroxyalkanoates (PHA) are intracellularly accumulated as inclusion bodies. Due to the limitation of the cell size, PHA accumulation is also limited. To solve this problem, Escherichia coli was enlarged by over-expression of sulA gene to inhibit the cell division FtsZ ring assembly, leading to the formation of filamentary E. coli that have larger internal space for PHA accumulation compared with rod shape E. coli. As a result, more than 100% increases on poly(3-hydroxybutyrate) (PHB) contents and cell dry weights (CDW) were achieved compared with its control strain under same conditions. The enlarged cell strategy was applied to the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) or P(3HB-co-4HB) by sad, gabD, essential genes ispH and folK knockout E. coli harboring two addictives and thus stable plasmids consisting of P(3HB-co-4HB) producing genes, including phaCAB operon, orfZ, 4hbD, sucD, essential genes ispH and folK as well as the sulA. The so constructed E. coli grew in glucose to form filamentary shapes with an improved P(3HB-co-4HB) accumulation around 10% more than its control strain without addition of 4HB precursor, reaching over 78% P(3HB-co-4HB) in CDW. Importantly, the shape changing E. coli was able to precipitate after 20 min stillstand. Finally, the filamentary recombinant E. coli was not only able to produce more P(3HB-co-4HB) from glucose but also allow convenient downstream separation from the fermentation broth.  相似文献   

4.
We have previously reported in vivo biosynthesis of polylactic acid (PLA) and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] employing metabolically engineered Escherichia coli strains by the introduction of evolved Clostridium propionicum propionyl-CoA transferase (Pct Cp ) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Ps6-19). Using this in vivo PLA biosynthesis system, we presently report the biosynthesis of PHAs containing 2-hydroxybutyrate (2HB) monomer by direct fermentation of a metabolically engineered E. coli strain. The recombinant E. coli ldhA mutant XLdh strain expressing PhaC1 Ps6-19 and Pct Cp was developed and cultured in a chemically defined medium containing 20 g/L of glucose and varying concentrations of 2HB and 3HB. PHAs consisting of 2HB, 3HB, and a small fraction of lactate were synthesized. Their monomer compositions were dependent on the concentrations of 2HB and 3HB added to the culture medium. Even though the ldhA gene was completely deleted in the chromosome of E. coli, up to 6 mol% of lactate was found to be incorporated into the polymer depending on the culture condition. In order to synthesize PHAs containing 2HB monomer without feeding 2HB into the culture medium, a heterologous metabolic pathway for the generation of 2HB from glucose was constructed via the citramalate pathway, in which 2-ketobutyrate is synthesized directly from pyruvate and acetyl-CoA. Introduction of the Lactococcus lactis subsp. lactis Il1403 2HB dehydrogenase gene (panE) into E. coli allowed in vivo conversion of 2-ketobutyrate to 2HB. The metabolically engineered E. coli XLdh strain expressing the phaC1437, pct540, cimA3.7, and leuBCD genes together with the L. lactis Il1403 panE gene successfully produced PHAs consisting of 2HB, 3HB, and a small fraction of lactate by varying the 3HB concentration in the culture medium. As the 3HB concentration in the medium increased the 3HB monomer fraction in the polymer, the polymer content increased. When Ralstonia eutropha phaAB genes were additionally expressed in this recombinant E. coli XLdh strain, P(2HB-co-3HB-co-LA) having small amounts of 2HB and LA monomers could also be produced from glucose as a sole carbon source. The metabolic engineering strategy reported here should be useful for the production of PHAs containing 2HB monomer.  相似文献   

5.
Polyhydroxyalkanoates (PHAs) are bio-based and biodegradable polyesters synthesized by numerous microorganisms. PHAs containing 2-hydroxyacids as monomer units have attracted much attention, but their production has not been efficient. Here, we metabolically engineered Ralstonia eutropha strains for the in vivo synthesis of PHAs containing 2-hydroxyacids as monomers. This was accomplished by replacing the R. eutropha phaC gene in the chromosome with either the R. eutropha phaC S506G A510K gene, which contains two point mutations, or the Pseudomonas sp. MBEL 6–19 phaC1437 gene. In addition, the R. eutropha phaAB genes in the chromosome were replaced with the Clostridium propionicum pct540 gene. All of the engineered R. eutropha strains produced PHAs containing 2-hydroxyacid monomers, including lactate and 2-hydroxybutyrate (2HB), along with 3-hydroxybutyrate (3HB) and/or 3-hydroxyvalerate (3HV), when they were cultured in nitrogen-free medium containing 5 g/L lactate or 4 g/L 2HB and 20 g/L glucose as carbon sources. Expression of the Escherichia coli ldhA gene in engineered R. eutropha strains allowed production of poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from glucose as the sole carbon source. This is the first report on the production of 2-hydroxyacid-containing PHAs by metabolically engineered R. eutropha.  相似文献   

6.
Summary Random copolymers of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) with a wide range of compositions varying from 0 to 83 mol% 4HB were produced by Alcaligenes latus from the mixed carbon substrates of 3-hydroxybutyric and 4-hydroxybutyric acids. The structure and physical properties of P(3HB-co-4HB) were characterized by1H and13C NMR spectroscopy, gel-permeation chromatography, and differential scanning calorimetry. The isothermal radial growth rates of spherulites of P(3HB-co-4HB) were much slower than the rate of P(3HB) homopolymer. The enzymatic degradation rates of P(3HB-co-4HB) films by a PHB depolymerase were strongly influenced by the copolymer composition.  相似文献   

7.
Cupriavidus sp. USMAA1020, a local isolate was able to biosynthesis poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer with various 4HB precursors as the sole carbon source. Manipulation of the culture conditions such as cell concentration, phosphate ratio and culture aeration significantly affected the synthesis of P(3HB-co-4HB) copolymer and 4HB composition. P(3HB-co-4HB) copolymer with 4HB compositions ranging from 23 to 75 mol% 4HB with various mechanical and thermal properties were successfully produced by varying the medium aeration. The physical and mechanical properties of P(3HB-co-4HB) copolymers were characterized by NMR spectroscopy, gel-permeation chromatography, tensile test, and differential scanning calorimetry. The number-average molecular weights (M n) of copolymers ranged from 260 × 103 to 590 × 103Da, and the polydispersities (M w/M n) were between 1.8 and 3.0. Increases in the 4HB composition lowered the molecular weight of these copolymers. In addition, the increase in 4HB composition affected the randomness of copolymer, melting temperature (T m), glass transition temperature (T g), tensile strength, and elongation to break. Enzymatic degradation of P(3HB-co-4HB) films with an extracellular depolymerase from Ochrobactrum sp. DP5 showed that the degradation rate increased proportionally with time as the 4HB fraction increased from 17 to 50 mol% but were much lower with higher 4HB fraction. Degradation of P(3HB-co-4HB) films with lipase from Chromobacterium viscosum exhibited highest degradation rate at 75 mol% 4HB. The biocompatibility of P(3HB-co-4HB) copolymers were evaluated and these copolymers have been shown to support the growth and proliferation of fibroblast cells.  相似文献   

8.
P[(R)-lactate-co-(R)-3-hydroxybutyrate] [P(LA-co-3HB)] was produced in engineered Escherichia coli using lignocellulose-derived hydrolysates from Miscanthus × giganteus (hybrid Miscanthus) and rice straw. Hybrid Miscanthus-derived hydrolysate exhibited no negative effect on polymer production, LA fraction, and molecular weight of the polymer, whereas rice straw-derived hydrolysate reduced LA fraction. These results revealed that P(LA-co-3HB) was successfully produced from hybrid Miscanthus-derived sugars.  相似文献   

9.
Ralstonia eutropha NCIMB 11599 and ATCC 17699 were grown, and their productions of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] compared. In flask cultures ofR. eutropha NCIMB 11599, cell concentration, P(3HB-co-4HB) concentration and polymer content decreased considerably with increases in the γ-butyrolactone concentration, and the 4HB fraction was also very low (maximum 1.74 mol%). In fed-batch cultures ofR. eutropha NCIMB 11599, glucose and γ-butyrolactone were fed as the carbon sources, under a phosphate limitation strategy. When glucose was fed as the sole carbon source, with its concentration controlled using an on-line glucose analyzer, 86% of the P(3HB) homopolymer was obtained from 201 g/L of cells. In a two-stage fed-batch culture, where the cell concentration was increased to 104 g/L, with glucose fed in the first step and constant feeding of γ-butyrolactone, at 6 g/h, in the second, final cell concentration at 67 h was 106 g/L, with a polymer content of 82%, while the 4HB fraction was only 0.7 mol%. When the same feeding strategy was applied to the fedbatch culture ofR. eutropha ATCC 17699, where the cell concentration was increased to 42 g/L, by feeding fructose in the first step and γ-butyrolactone (1.5 g/h) in the second, the final cell concentration, polymer content and 4HB fraction at 74 h were 51 g/L, 35% and 32 mol%, respectively. In summary,R. eutropha ATCC 17699 was better thanR. eutropha NCIMB 11599 in terms of P(3HB-co-4HB) production with various 4HB fractions.  相似文献   

10.
Metabolically engineered Escherichia coli strains were constructed to effectively produce novel glycolate-containing biopolymers from glucose. First, the glyoxylate bypass pathway and glyoxylate reductase were engineered such as to generate glycolate. Second, glycolate and lactate were activated by the Megasphaera elsdenii propionyl-CoA transferase to synthesize glycolyl-CoA and lactyl-CoA, respectively. Third, β-ketothiolase and acetoacetyl-CoA reductase from Ralstonia eutropha were introduced to synthesize 3-hydroxybutyryl-CoA from acetyl-CoA. At last, the Ser325Thr/Gln481Lys mutant of polyhydroxyalkanoate (PHA) synthase from Pseudomonas sp. 61–3 was over-expressed to polymerize glycolyl-CoA, lactyl-CoA and 3-hydroxybutyryl-CoA to produce poly(glycolate-co-lactate-co-3-hydroxybutyrate). The recombinant E. coli was able to accumulate the novel terpolymer with a titer of 3.90 g/l in shake flask cultures. The structure of the resulting polymer was chemically characterized by proton NMR analysis. Assessment of thermal and mechanical properties demonstrated that the produced terpolymer possessed decreased crystallinity and improved toughness, in comparison to poly(3-hydroxybutyrate) homopolymer. This is the first study reporting efficient microbial production of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose.  相似文献   

11.
A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 g l?1 cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5–2 g l?1 α-ketoglutarate or 1.0 g l?1 citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6 l fermentor study, a 23.5 g l?1 cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.  相似文献   

12.
Samples from various natural environments in Peninsular Malaysia were screened for microorganisms that are capable of producing poly(3-hydroxybutyrate-co-4-hydroxybutyrate). A total of 663 isolates were isolated and 119 out of these isolates were identified as possible PHA producers based on Nile red staining methods. All these potential producers emitted pink fluorescence when grown on solid mineral salts medium (MSM) containing Nile red and exposed to UV light. The isolates obtained in this study were cultivated in MSM containing γ-butyrolactone as the carbon source. Gas chromatography (GC) analysis confirmed that 95 out of the 119 isolates were PHA producers. Among the 95 positive isolates, 77 isolates produced only P(3HB) homopolymer and 18 isolates produced PHA containing 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Of these 18 isolates, USMAA1020 was screened as the best P(3HB-co-4HB) producer based on GC analysis. For further confirmation, PHA was extracted from the isolate and analyzed by GC as well as nuclear magnetic resonance (NMR). Results from both analyses confirmed that this isolate was capable of producing PHA containing 3HB and 4HB. Based on, biochemical characterization, 16S rRNA sequencing, DNA base composition, cellular fatty acids analysis and DNA–DNA hybridization, it is clearly indicated that this isolate belongs to the genus Cupriavidus. Poly(3HB-co-4HB) was synthesized by this bacterium in one-stage, two-stage and three-stage cultivation using γ-butyrolactone as the carbon source. The highest 4HB composition of 82 mol% was obtained through three-stage cultivation.  相似文献   

13.
Summary Poly(3-hydroxybutyrate) [P(3HB)] depolymerase was purified from a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]-degrading fungus, Paecilomyces lilacinus F4-5 by hydrophobic and ion exchange column chromatography, and showed a molecular mass of 45 kDa. The optimum temperature and pH of the P(3HB) depolymerase were 50 °C and 7.0, respectively. The enzyme was stable for at least 30 min at temperatures below 40 °C, while the activity abruptly decreased over 55 °C. Enzymatic P(3HB-co-3HV) degradation showed a similar degradation pattern to that of film overlaid by fungal hyphae. It reflects that the fungal degradation of P(3HB-co-3HV) in soil is mainly caused by extracellular depolymerases.  相似文献   

14.
Bacterial outer membrane (OM) is a self-protective and permeable barrier, while having many non-negligible negative effects in industrial biotechnology. Our previous studies revealed enhanced properties of Halomonas bluephagenesis based on positive cellular properties by OM defects. This study further expands the OM defect on membrane compactness by completely deleting two secondary acyltransferases for lipid A modification in H. bluephagenesis, LpxL and LpxM, and found more significant advantages than that of the previous lpxL mutant. Deletions on LpxL and LpxM accelerated poly(3-hydroxybutyrate) (PHB) production by H. bluephagenesis WZY229, leading to a 37% increase in PHB accumulation and 84-folds reduced endotoxin production. Enhanced membrane permeability accelerates the diffusion of γ-butyrolactone, allowing H. bluephagenesis WZY254 derived from H. bluephagenesis WZY229 to produce 82wt% poly(3-hydroxybutyrate-co-23mol%4-hydroxybutyrate) (P(3HB-co-23mol%4HB)) in shake flasks, showing increases of 102% and 307% in P(3HB-co-4HB) production and 4HB accumulation, respectively. The 4HB molar fraction in copolymer can be elevated to 32 mol% in the presence of more γ-butyrolactone. In a 7-l bioreactor fed-batch fermentation, H. bluephagenesis WZY254 supported a 84 g l−1 dry cell mass with 81wt% P(3HB-co-26mol%4HB), increasing 136% in 4HB molar fraction. This study further demonstrated that OM defects generate a hyperproduction strain for high 4HB containing copolymers.  相似文献   

15.
Pseudomonas sp. 61-3 accumulated a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer consisting of 3-hydroxyalkanoate (3HA) units of 4–12 carbon atoms. The genes encoding β-ketothiolase (PhbARe) and NADPH-dependent acetoacetyl-CoA reductase (PhbBRe) from Ralstoniaeutropha were expressed under the control of promoters for Pseudomonas sp. 61-3 pha locus or R. eutropha phb operon together with phaC1 Ps gene (PHA synthase 1 gene) from Pseudomonas sp. 61-3 in PHA-negative mutants P. putida GPp104 and R. eutropha PHB4 to produce copolyesters [P(3HB-co-3HA)] consisting of 3HB and medium-chain-length 3HA units of 6–12 carbon atoms. The introduction of the three genes into GPp104 strain conferred the ability to synthesize P(3HB-co-3HA) with relatively high 3HB compositions (up to 49 mol%) from gluconate and alkanoates, although 3HB units were not incorporated at all or at a very low fraction (3 mol%) into copolyesters by the strain carrying phaC1 Ps gene only. In addition, recombinant strains of R. eutropha PHB4 produced P(3HB-co-3HA) with higher 3HB fractions from alkanoates and plant oils than those from recombinant GPp104 strains. One of the recombinant strains, R. eutropha PHB4/pJKSc46-pha, in which all the genes introduced were expressed under the control of the native promoter for Pseudomonas sp. 61-3 pha locus, accumulated P(3HB-co-3HA) copolyester with a very high 3HB fraction (85 mol%) from palm oil. The nuclear magnetic resonance analyses showed that the copolyesters obtained here were random copolymers of 3HB and 3HA units. Received: 12 July 1999 / Received revision: 1 October 1999 / Accepted: 2 October 1999  相似文献   

16.
A rapid quantitative measurement of accumulated polyhydroxyalkanoate (PHA) is essential for rapid monitoring of PHA production by microorganisms. In the present study, a 96-well microplate was used as a high throughput means to measure the fluorescence intensity of the Nile red stained cells containing PHA. The linear correlation obtained between intracellular PHA concentration and the fluorescence intensity represents the potential of the Nile red method employment to determine PHA concentration. The optimal ranges of excitation and emission wavelengths were determined using bacterial cells containing different types of PHAs, of different co-monomers and compositions. Interestingly, in spite of different co-monomers compositions in each PHA, all tested PHAs fluoresced maximally at excitation wavelength between 520 and 550 nm, and emission wavelength between 590 and 630 nm. The developed staining method also had successfully demonstrated a good correlation between the amount of accumulated PHA based on the fluorescence intensity measurements and that from chromatographic analysis to evaluate poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)], using the same calibration curve, despite of different co-monomers that the PHA consist. Strongly supported by these experimental results, it can therefore be concluded that the developed staining method can be efficiently applied for rapid monitoring of PHA production.  相似文献   

17.
A new isolated bacterial strain A-04 capable of producing high content of polyhydroxyalkanoates (PHAs) was morphologically and taxonomically identified based on biochemical tests and 16S rRNA gene analysis. The isolate is a member of the genus Ralstonia and close to Ralstonia eutropha. Hence, this study has led to the finding of a new and unexplored R. eutropha strain A-04 capable of producing PHAs with reasonable yield. The kinetic study of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] production by the R. eutropha strain A-04 was examined using butyric acid and γ–hydroxybutyric acid as carbon sources. Effects of substrate ratio and mole ratio of carbon to nitrogen (C/N) on kinetic parameters were investigated in shake flask fed-batch cultivation. When C/N was 200, that is, nitrogen deficient condition, the specific production rate of 3-hydroxybutyrate (3HB) showed the highest value, whereas when C/N was in the range between 4 and 20, the maximum specific production rate of 4-hydroxybutyrate (4HB) was obtained. Thus, the synthesis of 3HB was growth-limited production under nitrogen-deficient condition, whereas the synthesis of 4HB was growth-associated production under nitrogen-sufficient condition. The mole fraction of 4HB units increased proportionally as the ratio of γ–hydroxybutyric acid in the feed medium increased at any value of C/N ratio. Based on these kinetic studies, a simple strategy to improve P(3HB-co-4HB) production in shake flask fed-batch cultivation was investigated using C/N and substrate feeding ratio as manipulating variable, and was successfully proved by the experiments. The nucleotide sequence 1,378 bp reported in this study will appear in the GenBank nucleotide sequence database under accession number EF988626.  相似文献   

18.
Pseudomonas sp. 61-3 (isolated from soil) produced a polyester consisting of 3-hydroxybutyric acid (3HB) and of medium-chain-length 3-hydroxyalkanoic acids (3HA) of C6, C8, C10 and C12, when sugars of glucose, fructose and mannose were fed as the sole carbon source. The polyester produced was a blend of homopolymer and copolymer, which could be fractionated with boiling acetone. The acetone-insoluble fraction of the polyester was a homopolymer of 3-hydroxybutyrate units [poly (3HB)], while the acetone-soluble fraction was a copolymer [poly(3HB-co-3HA)] containing both short- and medium-chain-length 3-hydroxyalkanoate units ranging from C4 to C12:44 mol% 3-hydroxybutyrate, 5 mol% 3-hydroxyhexanoate, 21 mol% 3-hydroxyoctanoate, 25 mol% 3-hydroxydecanoate, 2 mol% 3-hydroxydodecanoate and 3 mol% 3-hydroxy-5-cis-dodecenoate. The copolyester was shown to be a random copolymer of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate units by analysis of the 13C-NMR spectrum. The poly(3HB) homopolymer and poly (3HB-co-3HA) copolymer were produced simultaneously within cells from glucose in the absence of any nitrogen source, which suggests that Pseudomonas sp. 61-3 has two types of polyhydroxy-alkanoate syntheses with different substrate specificities. Received: 9 June 1995/Received last revision: 30 October 1995/Accepted: 6 November 1995  相似文献   

19.
20.
Previously, we have developed metabolically engineered Escherichia coli strains capable of producing polylactic acid (PLA) and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] by employing evolved Clostridium propionicum propionate CoA transferase (Pct Cp ) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Ps6-19). Introduction of mutations four sites (E130, S325, S477, and Q481) of PhaC1 Ps6-19 have been found to affect the polymer content, lactate mole fraction, and molecular weight of P(3HB-co-LA). In this study, we have further engineered type II Pseudomonas PHA synthases 1 (PhaC1s) from Pseudomonas chlororaphis, Pseudomonas sp. 61-3, Pseudomonas putida KT2440, Pseudomonas resinovorans, and Pseudomonas aeruginosa PAO1 to accept short-chain-length hydroxyacyl-CoAs including lactyl-CoA and 3-hydroxybutyryl-CoA as substrates by site-directed mutagenesis of four sites (E130, S325, S477, and Q481). All PhaC1s having mutations in these four sites were able to accept lactyl-CoA as a substrate and supported the synthesis of P(3HB-co-LA) in recombinant E. coli, whereas the wild-type PhaC1s could not accumulate polymers in detectable levels. The contents, lactate mole fractions, and the molecular weights of P(3HB-co-LA) synthesized by recombinant E. coli varied depending upon the source of the PHA synthase and the mutants used. PLA homopolymer could also be produced at ca. 7 wt.% by employing the several PhaC1 variants containing E130D/S325T/S477G/Q481K quadruple mutations in wild-type E. coli XL1-Blue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号