共查询到20条相似文献,搜索用时 15 毫秒
1.
coResearchers have long appreciated the significant relationship between body size and an animal's overall adaptive strategy and life history. However, much more emphasis has been placed on interpreting body size than on the actual calculation of it. One measure of size that is especially important for human evolutionary studies is stature. Despite a long history of investigation, stature estimation remains plagued by two methodological problems: (1) the choice of the statistical estimator, and (2) the choice of the reference population from which to derive the parameters.This work addresses both of these problems in estimating stature for fossil hominids, with special reference to A.L. 288-1 (Australopithecus afarensis) and WT 15000 (Homo erectus). Three reference samples of known stature with maximum humerus and femur lengths are used in this study: a large (n=2209) human sample from North America, a smaller sample of modern human pygmies (n=19) from Africa, and a sample of wild-collected African great apes (n=85). Five regression techniques are used to estimate stature in the fossil hominids using both univariate and multivariate parameters derived from the reference samples: classical calibration, inverse calibration, major axis, reduced major axis and the zero-intercept ratio model. We also explore a new diagnostic to test extrapolation and allometric differences with multivariate data, and we calculate 95% confidence intervals to examine the range of variation in estimates for A.L. 288-1, WT 15000 and the new Bouri hominid (contemporary with [corrected] Australopithecus garhi). Results frequently vary depending on whether the data are univariate or multivariate. Unique limb proportions and fragmented remains complicate the choice of estimator. We are usually left in the end with the classical calibrator as the best choice. It is the maximum likelihood estimator that performs best overall, especially in scenarios where extrapolation occurs away from the mean of the reference sample. The new diagnostic appears to be a quick and efficient way to determine at the outset whether extrapolation exists in size and/or shape of the long bones between the reference sample and the target specimen. 相似文献
2.
In the past, body mass was reconstructed from hominin skeletal remains using both \"mechanical\" methods which rely on the support of body mass by weight-bearing skeletal elements, and \"morphometric\" methods which reconstruct body mass through direct assessment of body size and shape. A previous comparison of two such techniques, using femoral head breadth (mechanical) and stature and bi-iliac breadth (morphometric), indicated a good general correspondence between them (Ruff et al. [1997] Nature 387:173-176). However, the two techniques were never systematically compared across a large group of modern humans of diverse body form. This study incorporates skeletal measures taken from 1,173 Holocene adult individuals, representing diverse geographic origins, body sizes, and body shapes. Femoral head breadth, bi-iliac breadth (after pelvic rearticulation), and long bone lengths were measured on each individual. Statures were estimated from long bone lengths using appropriate reference samples. Body masses were calculated using three available femoral head breadth (FH) formulae and the stature/bi-iliac breadth (STBIB) formula, and compared. All methods yielded similar results. Correlations between FH estimates and STBIB estimates are 0.74-0.81. Slight differences in results between the three FH estimates can be attributed to sampling differences in the original reference samples, and in particular, the body-size ranges included in those samples. There is no evidence for systematic differences in results due to differences in body proportions. Since the STBIB method was validated on other samples, and the FH methods produced similar estimates, this argues that either may be applied to skeletal remains with some confidence. 相似文献
3.
4.
Over the years, models and concepts developed to explain the behaviour of lake plankton have been generalized and extended to most parts of the limnetic community. This development has now fused with parallel research programs into stream and marine benthos and fish, to yield an imposing literature dealing with complex interactions in aquatic communities. Although the size of this literature has grown, its basic elements, i.e. the allometries of organismal capacity and environmental opportunity, remain those associated with the seminal size efficiency hypothesis. Unfortunately, the difficulties that eventually buried that hypothesis in a welter of detail and special cases were not resolved, so the newer, broader concepts associated with complex interactions remain difficult or impossible to test. Those concepts are so subjective, poorly defined, and variably interpreted that they are more effective in explaining our observations after the fact than in predicting them before-hand. Despite predictive failure, such explanatory models have achieved wide acceptance. Once accepted as substitutes for predictive theory, they mire the advance of science by hiding its deficiencies. One solution to this cloying complexity is insistence that the theories of ecology specify simple, observable response variables so that theories may be evaluated by their predictive power. Components of a general refuge concept illustrate the point. This policy has implications for environmental science well beyond the confines of plankton ecology.Dedicated to Dr Karl Banse, School of Oceanography, University of Washington on his 60th Birthday. 相似文献
5.
Aaron A. Sandel 《American journal of physical anthropology》2013,152(1):145-150
Humans are unusual among mammals in appearing hairless. Several hypotheses propose explanations for this phenotype, but few data are available to test these hypotheses. To elucidate the evolutionary history of human “hairlessness,” a comparative approach is needed. One previous study on primate hair density concluded that great apes have systematically less dense hair than smaller primates. While there is a negative correlation between body size and hair density, it remains unclear whether great apes have less dense hair than is expected for their body size. To revisit the scaling relationship between hair density and body size in mammals, I compiled data from the literature on 23 primates and 29 nonprimate mammals and conducted Phylogenetic Generalized Least Squares regressions. Among anthropoids, there is a significant negative correlation between hair density and body mass. Chimpanzees display the largest residuals, exhibiting less dense hair than is expected for their body size. There is a negative correlation between hair density and body mass among the broader mammalian sample, although the functional significance of this scaling relationship remains to be tested. Results indicate that all primates, and chimpanzees in particular, are relatively hairless compared to other mammals. This suggests that there may have been selective pressures acting on the ancestor of humans and chimpanzees that led to an initial reduction in hair density. To further understand the evolution of human hairlessness, a systematic study of hair density and physiology in a wide range of species is necessary. Am J Phys Anthropol 152:145–150, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
6.
7.
Brian T. Shea 《International journal of primatology》1983,4(1):33-62
A problematic aspect of brain/body allometry is the frequency of interspecific series which exhibit allometry coefficients
of approximately 0.33. This coefficient is significantly lower than the 0.66 value which is usually taken to be the interspecific
norm. A number of explanations have been forwarded to account for this finding. These include (1) intraspecificallometry explanations,
(2) nonallometric explanations, and (3) Jerison’s “extraneurons” hypothesis, among others. The African apes, which exhibit
a lowered interspecific allometry coefficient, are used here to consider previous explanations. These are found to be inadequate
in a number of ways, and an alternative explanation is proposed. This explanation is based on patterns of brain and body size
change during ontogeny and phytogeny. It is argued that the interspecific allometry coefficient in African apes parallels
the intraspecific one because similar ontogenetic modifications of body growth separate large and small forms along each curve.
In both cases, body size differences are produced primarily by growth in later postnatal periods, during which little brain
growth occurs. Data on body growth, neonatal scaling, and various lifehistory traits support this explanation. This work extends
previous warnings that sizecorrected estimates of relative brain size may not correspond very closely to our understanding
of the behavioral capacities of certain species in lineages characterized by rapid change in body size. 相似文献
8.
Natalie M. Warburton Philip W. Bateman Patricia Anne Fleming 《Biological journal of the Linnean Society. Linnean Society of London》2013,109(4):923-931
Studies of sexual selection have tended to concentrate on obvious morphological dimorphisms such as crests, horns, antlers, and other physical displays or weapons; however, traits that show no obvious sexual dimorphism may nevertheless still be under sexual selection. Sexual selection theory generally predicts positive allometry for sexually selected traits. When fighting, male kangaroos use their forelimbs to clasp and hold their opponent and, standing on their tail, bring up their hind legs to kick their opponent. This action requires substantial strength and balance. We examined allometry of forelimb musculature in male and female western grey kangaroos (Macropus fuliginosus) to determine whether selection through male–male competition is associated with sex differences in muscle development. Forelimbs of males are more exaggerated than in females, with relatively greater muscle mass in males than the equivalent muscles in females. Furthermore, while muscles generally showed isometric growth in female forelimbs, every muscle demonstrated positive allometry in males. The significant positive allometry in male forelimb musculature, particularly those muscles most likely involved in male–male combat (a group of muscles involved in grasping: shoulder adduction, elbow flexion; and pulling: arm retraction, elbow flexion), clearly suggests that this musculature is subject to sexual selection. In addition to contributing to locomotion, the forelimbs of male kangaroos can also act as a signal, a weapon, and help in clasping, features that would contribute towards their importance as a sexually selected trait. Males would therefore benefit from well‐developed musculature of the arms and upper body during competition for mates. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 923–931. 相似文献
9.
10.
Ana S. Duport‐Bru María L. Ponssa Florencia Vera Candioti 《Evolution & development》2019,21(5):263-275
Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest‐building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life‐cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large‐scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades. 相似文献
11.
12.
J. Arendt 《Journal of evolutionary biology》2015,28(1):169-178
Most ectotherms follow a pattern of size plasticity known as the temperature‐size rule where individuals reared in cold environments are larger at maturation than those reared in warm environments. This pattern seems maladaptive because growth is slower in the cold so it takes longer to reach a large size. However, it may be adaptive if reaching a large size has a greater benefit in a cold than in a warm environment such as when size‐dependent mortality or size‐dependent fecundity depends on temperature. I present a theoretical model showing how a correlation between temperature and the size–fecundity relationship affects optimal size at maturation. I parameterize the model using data from a freshwater pulmonate snail from the genus Physa. Nine families were reared from hatching in one of three temperature regimes (daytime temperature of 22, 25 or 28 °C, night‐time temperature of 22 °C, under a 12L : 12D light cycle). Eight of the nine families followed the temperature‐size rule indicating genetic variation for this plasticity. As predicted, the size–fecundity relationship depended upon temperature; fecundity increases steeply with size in the coldest treatment, less steeply in the intermediate treatment, and shows no relationship with size in the warmest treatment. Thus, following the temperature‐size rule is adaptive for this species. Although rarely measured under multiple conditions, size–fecundity relationships seem to be sensitive to a number of environmental conditions in addition to temperature including local productivity, competition and predation. If this form of plasticity is as widespread as it appears to be, this model shows that such plasticity has the potential to greatly modify current life‐history theory. 相似文献
13.
Shawn M. Lehman Mariam Nargolwalla Andrea Faulkner Nicole Taylor Rochelle Lundy 《International journal of primatology》2007,28(1):211-230
We determined if data on strepsirhine body and home range sizes support an optimal body size (OBS) model of 100 g, as predicted
from studies of energetics in terrestrial mammals. We also tested the following predictions of the OBS model: 1) relationships
between body and home range sizes will change slope and sign above and below the OBS threshold of 100 g and 2) best-fit lines
for OBS regression models (above and below the 100-g threshold) will intersect at ca. 100 g (range of 80–250 g). We collected data on body mass, home range size, and vertical ranging behavior for 37 strepsirhines
from the literature. Linear regression analyses and phylogenetic independent contrasts methods revealed that body size is
a significant determinant of both 2-dimensional (ha) and 3-dimensional (km3) home range sizes only in taxa weighing >100 g. There were consistent changes in the sign of the slopes above and below the
OBS threshold. The intersections of the best-fit lines were within the OBS range for the body size to 3-dimensional home range
comparisons. Thus, the data provide some support for the OBS model in strepsirhines. However, no regression model was statistically
significant for the taxa below the OBS threshold, which may reflect small sample sizes. Also, no slope differed significantly
between taxa above and below the OBS. Significant correlations between body and home range sizes for the complete data sets
refute the √-shaped constraint space predicted via the OBS model. 相似文献
14.
Scott C. Burgess Will H. Ryan Neil W. Blackstone Peter J. Edmunds Mia O. Hoogenboom Don R. Levitan Janie L. Wulff 《Invertebrate Biology》2017,136(4):456-472
Metabolic scaling is the relationship between organismal metabolic rate and body mass. Understanding the patterns and causes of metabolic scaling provides a powerful foundation for predicting biological processes at the level of individuals, populations, communities, and ecosystems. Despite intense interest in, and debate on, the mechanistic basis of metabolic scaling, relatively little attention has been paid to metabolic scaling in clonal animals with modular construction, such as colonial cnidarians, bryozoans, and colonial ascidians. Unlike unitary animals, modular animals are structural individuals subdivided into repeated morphological units, or modules, each able to acquire, process, and share resources. A modular design allows flexibility in organism size and shape with consequences for metabolic scaling. Furthermore, with careful consideration of the biology of modular animals, the size and shape of individual colonies can be experimentally manipulated to test competing theories pertaining to metabolic scaling. Here, we review metabolic scaling in modular animals and find that a wide range of scaling exponents, rather than a single value, has been reported for a variety of modular animals. We identify factors influencing variation in intraspecific scaling in this group that relate to the general observation that not all modules within a colony are identical. We highlight current gaps in our understanding of metabolic scaling in modular animals, and suggest future research directions, such as manipulating metabolic states and comparisons among species that differ in extent of module integration. 相似文献
15.
Archaeological assemblages often lack the complete long bones needed to estimate stature and body mass. The most accurate estimates of body mass and stature are produced using femoral head diameter and femur length. Foot bones including the first metatarsal preserve relatively well in a range of archaeological contexts. In this article we present regression equations using the first metatarsal to estimate femoral head diameter, femoral length, and body mass in a diverse human sample. The skeletal sample comprised 87 individuals (Andamanese, Australasians, Africans, Native Americans, and British). Results show that all first metatarsal measurements correlate moderately to highly (r = 0.62-0.91) with femoral head diameter and length. The proximal articular dorsoplantar diameter is the best single measurement to predict both femoral dimensions. Percent standard errors of the estimate are below 5%. Equations using two metatarsal measurements show a small increase in accuracy. Direct estimations of body mass (calculated from measured femoral head diameter using previously published equations) have an error of just over 7%. No direct stature estimation equations were derived due to the varied linear body proportions represented in the sample. The equations were tested on a sample of 35 individuals from Christ Church Spitalfields. Percentage differences in estimated and measured femoral head diameter and length were less than 1%. This study demonstrates that it is feasible to use the first metatarsal in the estimation of body mass and stature. The equations presented here are particularly useful for assemblages where the long bones are either missing or fragmented, and enable estimation of these fundamental population parameters in poorly preserved assemblages. 相似文献
16.
K. Steudel 《International journal of primatology》1981,2(1):81-90
A series of twenty-three skeletal variables are tested for their utility as estimators of body size, measured as partial skeletal weight, over 286 Old World anthropoids. Several variables proved to be consistently accurate in this for the present sample: bizygomatic breadth, bicondylar femoral width, skull length, orbital width, basioninion, femoral circumference and vertebral area. The only reasonably acceptable mandibular measurement was mandibular breadth. Other variables that have been used as size estimators in previous studies proved to be less accurate. 相似文献
17.
《Current biology : CB》2021,31(22):5062-5068.e4
- Download : Download high-res image (182KB)
- Download : Download full-size image
18.
19.
20.
Oliver Y. Martin Łukasz Michalczyk Anna L. Millard Brent C. Emerson Matthew J. G. Gage 《Insect Science》2017,24(1):133-140
Rensch's rule proposes a universal allometric scaling phenomenon across species where sexual size dimorphism (SSD) has evolved: in taxa with male‐biased dimorphism, degree of SSD should increase with overall body size, and in taxa with female‐biased dimorphism, degree of SSD should decrease with increasing average body size. Rensch's rule appears to hold widely across taxa where SSD is male‐biased, but not consistently when SSD is female‐biased. Furthermore, studies addressing this question within species are rare, so it remains unclear whether this rule applies at the intraspecific level. We assess body size and SSD within Tribolium castaneum (Herbst), a species where females are larger than males, using 21 populations derived from separate locations across the world, and maintained in isolated laboratory culture for at least 20 years. Body size, and hence SSD patterns, are highly susceptible to variations in temperature, diet quality and other environmental factors. Crucially, here we nullify interference of such confounds as all populations were maintained under identical conditions (similar densities, standard diet and exposed to identical temperature, relative humidity and photoperiod). We measured thirty beetles of each sex for all populations, and found body size variation across populations, and (as expected) female‐biased SSD in all populations. We test whether Rensch's rule holds for our populations, but find isometry, i.e. no allometry for SSD. Our results thus show that Rensch's rule does not hold across populations within this species. Our intraspecific test matches previous interspecific studies showing that Rensch's rule fails in species with female‐biased SSD. 相似文献