首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a laboratory stirred-tank fermentor (STF) with foaming system of 0.5M sulfite solution containing an anionic soft detergent, the performing of a foam-breaking apparatus with a rotating disk (FARD)fitted to the STF was evaluated. The gas holdup in a mechanical foam-control system (MFS), i.e., the stirred-tank fermentor with the rotating disk foambreaker, was confirmed to be larger than that in a nonfoaming system (NS), i.e., the STF with an antifoam agent added. The agitation power in the mechanical foam control system was found to be smaller compared with the agitation power in the nonfoaming system, due to the increased gas holdup. Comparison of the oxygen absorption coefficient between the mechanical foam control system and the nonfoaming system in terms of the specific power input also demonstrated the superiority of the mechanical foam control system, not only in oxygen transfer performance but also in power input economy.  相似文献   

2.
Scale-up on basis of structured mixing models: A new concept   总被引:1,自引:0,他引:1  
A new scale-up concept based upon mixing models for bioreactors equipped with Rushton turbines using the tanks-in-series concept is presented. The physical mixing model includes four adjustable parameters, i.e., radial and axial circulation time, number of ideally mixed elements in one cascade, and the volume of the ideally mixed turbine region. The values of the model parameters were adjusted with the application of a modified Monte-Carlo optimization method, which fitted the simulated response function to the experimental curve. The number of cascade elements turned out to be constant (N = 4). The model parameter radial circulation time is in good agreement with the one obtained by the pumping capacity. In case of remaining parameters a first or second order formal equation was developed, including four operational parameters (stirring and aeration intensity, scale, viscosity). This concept can be extended to several other types of bioreactors as well, and it seems to be a suitable tool to compare the bioprocess performance of different types of bioreactors. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
    
Non‐invasive methods for online monitoring of biotechnological processes without compromising the integrity of the reactor system are very important to generate continuous data. Even though calorimetry has been used in conventional biochemical analysis for decades, it has not yet been specifically applied for online detection of product formation at technical scale. Thus, this article demonstrates a calorespirometric method for online detection of microbial lysine formation in stirred tank bioreactors. The respective heat generation of two bacterial strains, Corynebacterium glutamicum ATCC 13032 (wild‐type) and C. glutamicum DM1730 (lysine producer), was compared with the O2‐consumption in order to determine whether lysine was formed. As validation of the proposed calorespirometric method, the online results agreed well with the offline measured data. This study has proven that calorespirometry is a viable non‐invasive technique to detect product formation at any time point. Biotechnol. Bioeng. 2013; 110: 1386–1395. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
    
Calorimetry is a robust method for online monitoring and controlling bioprocesses in stirred tank reactors. Up to now, reactor calorimeters have not been optimally constructed for pilot scale applications. Thus, the objective of this paper is to compare two different ways for designing reactor calorimeters and validate them. The “heat capacity” method based on the mass flow of the cooling liquid in the jacket was compared with the “heat transfer” method based on the heat transfer coefficient continuously measured in the cultivation of Escherichia coli VH33 in a 50 L stirred tank reactor. It was found that the values of the “heat transfer” method agreed very well with the calculated values from the oxygen consumption. By contrast, the curve of the “heat capacity” method deviated from that of the oxygen consumption calculated with the oxycaloric equivalent. In conclusion, the “heat transfer” method has been proven to have a higher degree of validity than the “heat capacity” method. Thus, it is a better and more robust means to measure heat generation of fermentations in stirred tank bioreactors on a pilot scale. Biotechnol. Bioeng. 2013; 110: 180–190. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
    
Poor startup of biological hydrogen production systems can cause an ineffective hydrogen production rate and poor biomass growth at a high hydraulic retention time (HRT), or cause a prolonged period of acclimation. In this paper a new startup strategy was developed in order to improve the enrichment of the hydrogen‐producing population and the efficiency of hydrogen production. A continuously‐stirred tank reactor (CSTR) and molasses were used to evaluate the hydrogen productivity of the sewage sludge microflora at a temperature of 35 °C. The experimental results indicated that the feed to microorganism ratio (F/M ratio) was a key parameter for the enrichment of hydrogen producing sludge in a continuous‐flow reactor. When the initial biomass was inoculated with 6.24 g of volatile suspended solids (VSS)/L, an HRT of 6 h, an initial organic loading rate (OLR) of 7.0 kg chemical oxygen demand (COD)/(m3 × d) and an feed to microorganism ratio (F/M) ratio of about 2–3 g COD/(g of volatile suspended solids (VSS) per day) were maintained during startup. Under these conditions, a hydrogen producing population at an equilibrium state could be established within 30 days. The main liquid fermentation products were acetate and ethanol. Biogas was composed of H2 and CO2. The hydrogen content in the biogas amounted to 47.5 %. The average hydrogen yield was 2.01 mol/mol hexose consumed. It was also observed that a special hydrogen producing population was formed when this startup strategy was used. It is supposed that the population may have had some special metabolic pathways to produce hydrogen along with ethanol as the main fermentation products.  相似文献   

6.
    
A family of an enzymatically catalyzed reaction network was studied, which involves the hydrolysis of penicillin G by penicillin G acylase in an isothermal continuous flow stirred tank reactor (CFSTR). This system consisted of 10 coupled non‐linear equations and was found to be capable of exhibiting computational multiple steady states. A set of kinetic parameters determined from the existing experimental data were used to compute a set of rate constants and two corresponding steady states. This suggested that multiple steady states may occur in the system studied. The phenomena of bistability, hysteresis and bifurcation were discussed. Moreover, the capacity of steady state multiplicity was extended to its family of reaction networks.  相似文献   

7.
Liu Q  Jia C  Kim JM  Jiang P  Zhang X  Feng B  Xu S 《Biotechnology letters》2008,30(3):497-502
Monolauroyl maltose was synthesized by an immobilized lipase that catalyzed condensation of maltose and lauric acid in acetone using a batch reactor or a continuous stirred tank reactor. Mono- and di-lauroyl maltoses were identified by FT-IR, 1H NMR, 13C NMR and MS. Monolauroyl maltose was selectively synthesized in a continuous stirred tank reactor and no diester was detected. The highest concentration of monolauroyl maltose at 28 mmol/l was obtained in 250 ml acetone when maltose was added at 4 g/d and the molar ratio of lauric acid to maltose was fixed at 4:1 at a flow rate of 0.15 ml/min for both influx and effluent without supplement of fresh molecular sieve.  相似文献   

8.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

9.
Abstract

Phytases are mainly produced by filamentous fungi and have great potential for biotechnological use in animal feed treatment, because this enzyme hydrolyzes ester bonds of the phytic acid releasing inositol and inorganic phosphate. The aim of this work was to evaluate the effect of pH on the production of phytase by Aspergillus japonicus in two different bioreactors, known to have different mixing patterns—stirred tank and air-lift bioreactors. The maximum phytase production—53 U/mL—was obtained at 120 h in the stirred tank while in the air-lift the maximum value was 41 U/mL, observed at 144 h. In fermentations evaluated at controlled pH values (3.5, 6.0, and 7.5), the stirred tank was more efficient for production of phytase than the air-lift. Under these conditions, the highest value was measured at 24 h and pH 3.5. These results were not closely related to fungi particle size, because hyphae with a similar diameter (0.51–0.63 mm) and sphericity (0.78–0.87 mm) secreted different amounts of phytase under the conditions studied.  相似文献   

10.
    
Fong W  Zhang Y  Yung P 《Cytotechnology》1997,24(1):47-54
To increase the yield of monoclonal antibody in a hybridoma culture, it is important to optimize the combination of several factors including cell density, antibody productivity per cell, and the duration of the culture. Potassium acetate enhances the production of antibodies by cells but sometimes depresses cell density. The production of anti-(human B-type red blood cell surface antigen) antibody by Cp9B hybridoma was studied. In batch cultures, potassium acetate inhibited Cp9B cells growth and decreased the maximal cell density but the productivity of antibody per cell was increased. The balance of the two effects resulted in a slight decline of antibody production. In a stirred tank bioreactor, the inhibitory effect of potassium acetate on cell density was overcome by applying the perfusion technique with the attachment of a cell-recycling apparatus to the bioreactor. In such a reactor, potassium acetate at 1 g l-1 did not cause a decrease in the cell density, and the antibody concentration in the culture supernatant was increased from 28 μg ml-1 to 38 μg ml-1. Potassium acetate also suppressed the consumption of glucose and the accumulation of lactate in batch cultures, but the glucose and lactate levels were kept stable by applying the perfusion technique in the stirred tank bioreactor. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
    
We describe a study of oxygen transfer in shake flasks using a non-invasive optical sensor. This study investigates the effect of different plugs, presence of baffles, and the type of media on the dissolved oxygen profiles during Escherichia coli fermentation. We measured the volumetric mass transfer coefficient (k(L)a) under various conditions and also the resistances of the various plugs. Finally, we compared shake flask k(L)a with that from a stirred tank fermentor. By matching k(L)a's we were able to obtain similar growth and recombinant protein product formation kinetics in both a fermentor and a shake flask. These results provide a quantitative comparison of fermentations in a shake flask vs. a bench-scale fermentor and should be valuable in guiding scale-up efforts.  相似文献   

12.
A process to obtain optically pure l-alanine has been developed using batch and continuous stirred tank reactors with a new l-aminoacylase-producing bacterium Pseudomonas sp. BA2 immobilized in calcium alginate beads coated with glutaraldehyde. The maximum production of l-alanine in a continuous stirred tank reactor was 11.26 g after 2 days of operation which is higher than that previously reported.  相似文献   

13.
The Freter model: A simple model of biofilm formation   总被引:1,自引:0,他引:1  
A simple, conceptual model of biofilm formation, due to R. Freter et al. (1983), is studied analytically and numerically in both CSTR and PFR. Two steady state regimes are identified, namely, the complete washout of the microbes from the reactor and the successful colonization of both the wall and bulk fluid. One of these is stable for any particular set of parameter values and sharp and explicit conditions are given for the stability of each. The effects of adding an anti-microbial agent to the CSTR are examined.Supported by NSF Grant DMS 0107439 and UTA Grant REP 14748717Supported by NSF Grant DMS 0107160  相似文献   

14.
Precursor feeding strategy for increasing the yield of conessine, a steroidal alkaloid of Holarrhena antidysenterica, was established in cell suspension culture. A total of 50 mg/L added cholesterol was converted into 43 mg/L of alkaloid, 90% of which constituted the conessine. By applying the precursor feeding policy to the cell suspension culture in modified Murashige and Skoog (MS) medium, a total of 143 mg/L of alkaloid was produced in 8 days. In this way the alkaloid content of the cells was increased more than six times compared to that obtained in the standard MS medium. The steps leading to biotransformation of cholesterol into alkaloids were unaffected by phosphate. The shake flask data were successfully transferred to a bench scale 6-L stirred tank bioreactor in which the specific biosynthetic rate of alkaloid production was 110 mg/100 g dry cell weight per day, about 160 times higher than that of whole plant.  相似文献   

15.
A membrane bioreactor containing cutinase microencapsulated in reversed micelles of AOT/isooctane was used to perform the alcoholysis of butyl acetate with hexanol. The membrane used was a tubular ceramic membrane with a cut-off of 15, 000 Da. Membrane characterization involved two parts: structure definition and operational properties. The former included membrane imaging to define the average membrane pore size. With the values obtained, characterization proceeded through the prediction of permeability and number of pores. The separation properties of the membrane were evaluated with the determination of rejection coefficients, based on transmission experiments, for all system components, including the substrates, products and the biocatalyst. The performance of the membrane bioreactor (MBR) was compared with the results obtained in a batch stirred tank reactor (BSTR) using the normalized residence time concept. The MBR operated as a differential reactor as theoretical treatment of experimental data demonstrated.  相似文献   

16.
    
Chimeric antigen receptor T‐cell (CAR‐T) therapies have proven clinical efficacy for the treatment of hematological malignancies. However, CAR‐T cell therapies are prohibitively expensive to manufacture. The authors demonstrate the manufacture of human CAR‐T cells from multiple donors in an automated stirred‐tank bioreactor. The authors successfully produced functional human CAR‐T cells from multiple donors under dynamic conditions in a stirred‐tank bioreactor, resulting in overall cell yields which were significantly better than in static T‐flask culture. At agitation speeds of 200 rpm and greater (up to 500 rpm), the CAR‐T cells are able to proliferate effectively, reaching viable cell densities of >5 × 106 cells ml‐1 over 7 days. This is comparable with current expansion systems and significantly better than static expansion platforms (T‐flasks and gas‐permeable culture bags). Importantly, engineered T‐cells post‐expansion retained expression of the CAR gene and retained their cytolytic function even when grown at the highest agitation intensity. This proves that power inputs used in this study do not affect cell efficacy to target and kill the leukemia cells. This is the first demonstration of human CAR‐T cell manufacture in stirred‐tank bioreactors and the findings present significant implications and opportunities for larger‐scale allogeneic CAR‐T production.  相似文献   

17.
    
Aims:  Evaluation of various immobilization methods and bioreactors for sulfide oxidation using Thiobacillus sp. was studied.
Methods and Results:  Ca-alginate, K-carrageenan and agar gel matrices (entrapment) and polyurethane foam and granular activated carbon (adsorption) efficacy was tested for the sulfide oxidation and biomass leakage using immobilized Thiobacillus sp. Maximum sulfide oxidation of 96% was achieved with alginate matrix followed by K-carrageenan (88%). Different parameters viz. alginate concentration (1%, 2%, 3%, 4% and 5%), CaCl2 concentration (1%, 2%, 3%, 4% and 5%), bead diameter (1, 2, 3, 4 and 5 mm), and curing time (1, 3, 6, 12 and 18 h) were studied for optimal immobilization conditions. Repeated batch experiments were carried out to test reusability of Ca-alginate immobilized beads for sulfide oxidation in stirred tank reactor and fluidized bed reactor (FBR) at different sulfide concentrations.
Conclusions:  The results proved to be promising for sulfide oxidation using Ca-alginate gel matrix immobilized Thiobacillus sp. for better sulfide oxidation with less biomass leakage.
Significance and Impact of the Study:  Biological sulfide oxidation is gaining more importance because of its simple operation. Present investigations will help in successful design and operation of pilot and industrial level FBR for sulfide oxidation.  相似文献   

18.
    
In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5–100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple—easy to assemble, easy to use, easy to clean—cell culture mini‐bioreactors for lab‐scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini‐bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini‐bioreactor were comparable to those observed for 6‐well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini‐bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini‐bioreactor. Biotechnol. Bioeng. 2013; 110: 1106–1118. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The biosynthetic mechanism of 6-methyloctanoic and isooctanoic acids, which are present in the amide linkage with the α-amino group of the terminal α, γ-diaminobutyric acid residue of colistin A and B, respectively was investigated. From the isotopic experiments using isoleucine-U-14C, valine-U-14C and acetic acid-2-14C, it was concluded that 6-methyloctanoic and isooctanoic acids were derived from isoleucine and valine, respectively.

Amino acids pooled in colistin-producing cells grown in the synthetic medium were abundant in isoleucine, valine and leucine, which were probable precursors of the abovedescribed fatty acid components of colistin and cellular fatty acids. On the other hand, 6-methyloctanoic and isooctanoic acids were not found in the cellular fatty acids, while C-15 and C-16 branched chain fatty acids usually found in Bacillus sp. were abundantly contained in the cells, indifferently of an improved capacity of colistin formation.  相似文献   

20.
Orbitally shaken bioreactors (OSRs) support the suspension cultivation of animal cells at volumetric scales up to 200 L and are a potential alternative to stirred‐tank bioreactors (STRs) due to their rapid and homogeneous mixing and high oxygen transfer rate. In this study, a Chinese hamster ovary cell line producing a recombinant antibody was cultivated in a 5 L OSR and a 3 L STR, both operated with or without pH control. Effects of bioreactor type and pH control on cell growth and metabolism and on recombinant protein production and glycosylation were determined. In pH‐controlled bioreactors, the glucose consumption and lactate production rates were higher relative to cultures grown in bioreactors without pH control. The cell density and viability were higher in the OSRs than in the STRs, either with or without pH control. Volumetric recombinant antibody yields were not affected by the process conditions, and a glycan analysis of the antibody by mass spectrometry did not reveal major process‐dependent differences in the galactosylation index. The results demonstrated that OSRs are suitable for recombinant protein production from suspension‐adapted animal cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1174–1180, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号