共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Process Biochemistry》2014,49(5):740-744
The effects of oxido-reduction potential (ORP) control on succinic acid production have been investigated in Escherichia coli LL016. In LL016, two CO2 fixation pathways were achieved and NAD+ supply was enhanced by co-expression of heterologous pyruvate carboxylase (PYC) and nicotinic acid phosphoribosyltransferase (NAPRTase). During anaerobic fermentation, cell growth and metabolite distribution were changed with redox potential levels in the range of −200 to −400 mV. From the results, the ORP level of −400 mV was preferable, which resulted in the high succinic acid concentration (28.6 g/L) and high succinic acid productivity (0.33 g/L/h). Meanwhile, the yield of succinic acid at the ORP level of −400 mV was 39% higher than that at the ORP level of −200 mV. In addition, a higher NADH/NAD+ ratio and increased enzyme activities were also achieved by regulating the culture to a more reductive environment, which further enhanced the succinic acid production. 相似文献
3.
4.
Two metabolically engineered E. coli strains HL2765k and HL27659k, while capable of producing succinate from glucose with high yields, are not able to grow and produce succinate on sucrose. Consequently, the pUR400 plasmid containing scrK, Y, A, B, and R genes was introduced into HL2765k and HL27659k, respectively. Shake flask culture studies showed that the resulting strains can utilize sucrose; the strain HL2765k pUR400 and HL27659k pUR400 can produce succinate aerobically with a molar yield of 0.78 ± 0.02 mol/mol and 1.35 ± 0.13 mol/mol, respectively. On introduction of the plasmid pHL413, which encodes the heterologous pyruvate carboxylase (PYC) from Lactococcus lactis, the molar succinate yield increased to 1.60 ± 0.01 mol of succinate per mole of sucrose by the HL2765k pUR400 pHL413 strain and to 1.84 ± 0.10 by the HL27659k pUR400 pHL413 strain. In aerobic batch bioreactor studies, the succinate production rate was faster, and succinate production reached 101.83 mM with a yield of 1.90 when dissolved oxygen (DO) was controlled at 40 ± 7%. In addition, the results showed that DO had an important effect on succinate production by influencing PYC activity. This work demonstrates the possibility of producing succinate aerobically using sucrose as the carbon source. 相似文献
5.
Succinic acid has drawn much interest as a precursor of many industrially important chemicals. Using a variety of feedstocks for the bio-production of succinic acid would be economically beneficial to future industrial processes. Escherichia coli SBS550MG is able to grow on both glucose and fructose, but not on sucrose. Therefore, we derived a SBS550MG strain bearing both the pHL413 plasmid, which contains Lactococcus lactis pycA gene, and the pUR400 plasmid, which contains the scrK, Y, A, B, and R genes for sucrose uptake and catalyzation. Succinic acid production by this modified strain and the SBS550pHL413 strain was tested on fructose, sucrose, a mixture of glucose and fructose, a mixture of glucose, fructose and sucrose, and sucrose hydrolysis solution. The modified strain can produce succinic acid efficiently from all combinations of different carbon sources tested with minimal byproduct formation and with high molar succinate yields close to that of the maximum theoretic values. The molar succinic acid yield from fructose was the highest among the carbon sources tested. Using the mixture of glucose and fructose as the carbon source resulted in slightly lower yields and much higher productivity than using fructose alone. Fermenting sucrose mixed with fructose and glucose gave a 1.76-fold higher productivity than that when sucrose was used as the sole carbon source. Using sucrose pretreated with sulfuric acid as carbon source resulted in a similar succinic acid yield and productivity as that when using the mixture of sucrose, fructose, and glucose. The results of the effect of agitation rate in aerobic phase on succinate production showed that supplying large amount of oxygen in aerobic phase resulted in higher productions of formate and acetate, and therefore lower succinate yield. This study suggests that fructose, sucrose, mixture of glucose and fructose, mixture of glucose, fructose and sucrose, or sucrose hydrolysis solution could be used for the economical and efficient production of succinic acid by our metabolic engineered E. coli strain. 相似文献
6.
富含蔗糖的甘蔗糖蜜可作为制备丁二酸的廉价原料。然而生产丁二酸的潜力菌株大肠杆菌Escherichia coli AFP111不能代谢蔗糖。为了使其具有蔗糖代谢能力,将E.coli W中非PTS蔗糖利用系统蔗糖通透酶的编码基因csc B,果糖激酶的编码基因csc K和蔗糖水解酶的编码基因csc A克隆并表达到AFP111中,获得重组菌株AFP111/p MD19T-csc BKA。经厌氧发酵验证,重组菌株72 h消耗20 g/L蔗糖,丁二酸产量达到12 g/L。在3L发酵罐中采用有氧阶段培养菌体、厌氧阶段发酵的两阶段发酵方式,厌氧发酵30 h,重组菌株以蔗糖和糖蜜为碳源丁二酸产量分别为34 g/L和30 g/L。结果表明,通过外源引入非PTS蔗糖利用系统,重组菌株具有较强的代谢蔗糖生长及合成丁二酸的能力,并且能够利用廉价糖蜜发酵制备丁二酸。 相似文献
7.
Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock 下载免费PDF全文
Dan Wang Hui Wu Chandresh Thakker Jared Beyersdorf George N. Bennett Ka-Yiu San 《Biotechnology progress》2015,31(3):686-694
To be competitive with current petrochemicals, microbial synthesis of free fatty acids can be made to rely on a variety of renewable resources rather than on food carbon sources, which increase its attraction for governments and companies. Industrial waste soybean meal is an inexpensive feedstock, which contains soluble sugars such as stachyose, raffinose, sucrose, glucose, galactose, and fructose. Free fatty acids were produced in this report by introducing an acyl‐ACP carrier protein thioesterase and (3R)‐hydroxyacyl‐ACP dehydratase into E. coli. Plasmid pRU600 bearing genes involved in raffinose and sucrose metabolism was also transformed into engineered E. coli strains, which allowed more efficient utilization of these two kinds of specific oligosaccharide present in the soybean meal extract. Strain ML103 (pRU600, pXZ18Z) produced ~1.60 and 2.66 g/L of free fatty acids on sucrose and raffinose, respectively. A higher level of 2.92 g/L fatty acids was obtained on sugar mixture. The fatty acid production using hydrolysate obtained from acid or enzyme based hydrolysis was evaluated. Engineered strains just produced ~0.21 g/L of free fatty acids with soybean meal acid hydrolysate. However, a fatty acid production of 2.61 g/L with a high yield of 0.19 g/g total sugar was observed on an enzymatic hydrolysate. The results suggest that complex mixtures of oligosaccharides derived from soybean meal can serve as viable feedstock to produce free fatty acids. Enzymatic hydrolysis acts as a much more efficient treatment than acid hydrolysis to facilitate the transformation of industrial waste from soybean processing to high value added chemicals. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:686–694, 2015 相似文献
8.
在利用大肠杆菌AFP111厌氧发酵生产丁二酸过程中,随着产物丁二酸的不断积累,菌体活力和产酸能力逐渐降低,而通过回收菌体在新鲜培养基中重复发酵,可延长厌氧发酵时间,但是丁二酸生产效率较低。为了提高菌体回收丁二酸的转化效率,通过在回收菌体时有氧诱导 3 h,以纯水为培养基,进行丁二酸转化发酵。在连续进行 3 批次的发酵后,丁二酸的总产量和最终收率分别为 56.50 g/L和90%,生产速率达到了 0.81 g/(L·h),比未诱导情况下的生产速率提高了13%。 相似文献
9.
Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions 总被引:1,自引:0,他引:1
Vemuri GN Eiteman MA Altman E 《Journal of industrial microbiology & biotechnology》2002,28(6):325-332
We examined succinic acid production in Escherichia coli AFP111 using dual-phase fermentations, which comprise an initial aerobic growth phase followed by an anaerobic production
phase. AFP111 has mutations in the pfl, ldhA, and ptsG genes, and we additionally transformed this strain with the pyc gene (AFP111/pTrc99A-pyc) to provide metabolic flexibility at the pyruvate node. Aerobic fermentations with these two strains were completed to catalog
physiological states during aerobic growth that might influence succinate generation in the anaerobic phase. Activities of
six key enzymes were also determined for these aerobic fermentations. From these results, six transition times based on physiological
states were selected for studying dual-phase fermentations. The final succinate yield and productivity depend greatly on the
physiological state of the cells at the time of transition. Using the best transition time, fermentations achieved a final
succinic acid concentration of 99.2 g/l with an overall yield of 110% and productivity of 1.3 g/l h. Journal of Industrial Microbiology & Biotechnology (2002) 28, 325–332 DOI: 10.1038/sj/jim/7000250
Received 01 October 2001/ Accepted in revised form 12 March 2002 相似文献
10.
来自恶臭假单胞菌的腈水解酶具有高效催化3-氰基吡啶产烟酸的能力,对表达该酶的基因psn进行发酵和产酶条件优化,通过对C源、N源、磷酸盐、金属离子、温度、诱导剂浓度和诱导时间进行单因素考察,获得最适培养基条件(g/L):葡萄糖5、蛋白胨15、酵母粉5、(NH4)2SO45、K2HPO424.5、KH2PO45.76、MgSO40.48;最佳诱导条件:培养2.5 h后添加IPTG诱导,浓度0.2 mmol/L,诱导温度30℃。在该条件下培养,重组大肠杆菌的腈水解酶比酶活可达到45.67 U/mL,比优化前提高了2.26倍。在此基础上,于5 L发酵罐上进行C、N源的补料研究,获得最适分批补料策略,发现其腈水解酶活力可达到75.40 U/mL,是优化前的3.74倍。 相似文献
11.
Succinate production from xylose‐glucose mixtures using a consortium of engineered Escherichia coli 下载免费PDF全文
The conversion of variable sugar mixtures into biochemicals poses a challenge for a single microorganism. For example, succinate has not been effectively generated from mixtures of glucose and xylose. In this work, a consortium of two Escherichia coli strains converted xylose and glucose to succinate in a dual phase aerobic/anaerobic process. First, the optimal pathway from xylose or glucose to succinate was determined by expressing either heterologous pyruvate carboxylase or heterologous adenosine triphosphate‐forming phosphoenol pyruvate (PEP) carboxykinase. Expression of PEP carboxykinase (pck) resulted in higher yield (0.86 g/g) and specific productivity (155 mg/gh) for xylose conversion, while expression of pyruvate carboxylase (pyc) resulted in higher productivity (76 mg/gh) for glucose conversion. Then, processes using consortia of the two optimal xylose‐selective and glucose‐selective strains were designed for two different feed ratios of glucose/xylose. In each case the consortia generated over 40 g/L succinate efficiently with yields greater than 0.90 g succinate/g total sugar. This study demonstrates two advantages of microbial consortia for the conversion of sugar mixtures: each sugar‐to‐product pathway can be optimized independently, and the volumetric consumption rate for each sugar can be controlled independently, for example, by altering the biomass concentration of each consortium member strain. 相似文献
12.
对重组大肠杆菌JH16利用木糖产高纯度的三一乳酸进行研究。通过无氧管驯化EscherwhiacdiJH12菌株得到E.coliJH16,驯化后的菌株茵体浓度提高了31%,乙酸积累减少了43%;在摇瓶中考察不同Mg2+浓度对EcoliJHl6产三一乳酸的影响,确定最适Mg2+质量浓度为0.25g/L;EcoEJH16以60g/L木糖为C源,在7L全自动发酵罐中添加0.25g/LMg2+,乳酸积累量提高了18%,达38.18g/L,乳酸纯度高达95%;E.coliJH16在30g/L木糖和30g/L葡萄糖混合C源中,优先利用葡萄糖,当葡萄糖质量浓度低于1.56g/L后,菌体开始利用木糖进行乳酸发酵,最终得到39g/L乳酸。 相似文献
13.
AIM: Development and optimization of an efficient and inexpensive medium for succinic acid production by Escherichia coli under anaerobic conditions. METHODS AND RESULTS: Initially, 0.8 gl(-1) of succinic acid was produced in 60 h in 300-ml medium. On optimization, glucose and peptone were replaced by cane molasses and corn steep liquor. Three hundred ml of this medium was inoculated with 4% (v/v) of seed inoculum, incubated at 39 degrees C for 72 h, resulted in 7.1 gl(-1) of succinic acid in 36 h. Scale up in a 10-l fermentor under conditions of controlled pH and continuous CO2 supply in this medium resulted in 17 gl(-1) of succinic acid in 30 h. CONCLUSIONS: A ninefold increase in succinic acid production was obtained in 500-ml anaerobic bottles with optimized medium having cane molasses and corn steep liquor as against initial medium containing glucose and peptone. However, a subsequent scale up in a 10-l fermentor resulted in a 2.5-fold increase in succinic acid production as against optimized medium used in 500-ml anaerobic bottles. SIGNIFICANCE AND IMPACT OF THE STUDY: Succinic acid production was enhanced in medium consisting of inexpensive carbon and nitrogen sources in a shorter span of time. 相似文献
14.
15.
Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars 总被引:4,自引:0,他引:4
B S Dien N N Nichols R J Bothast 《Journal of industrial microbiology & biotechnology》2001,27(4):259-264
Recombinant Escherichia coli have been constructed for the conversion of glucose as well as pentose sugars into L-lactic acid. The strains carry the lactate dehydrogenase gene from Streptococcus bovis on a low copy number plasmid for production of L-lactate. Three E. coli strains were transformed with the plasmid for producing L-lactic acid. Strains FBR9 and FBR11 were serially transferred 10 times in anaerobic cultures in sugar-limited medium containing
glucose or xylose without selective antibiotic. An average of 96% of both FBR9 and FBR11 cells maintained pVALDH1 in anaerobic
cultures. The fermentation performances of FBR9, FBR10, and FBR11 were compared in pH-controlled batch fermentations with
medium containing 10% w/v glucose. Fermentation results were superior for FBR11, an E. coli B strain, compared to those observed for FBR9 or FBR10. FBR11 exhausted the glucose within 30 h, and the maximum lactic acid
concentration (7.32% w/v) was 93% of the theoretical maximum. The other side-products detected were cell mass and succinic
acid (0.5 g/l). Journal of Industrial Microbiology & Biotechnology (2001) 27, 259–264.
Received 05 November 2000/ Accepted in revised form 03 July 2001 相似文献
16.
In a medium without oxygen in the presence of nitrates, E. coli transforms p-chloranilin (p-CA) to yield a more hydrophilic compound which cannot be extracted with an organic solvent from water. The conditions for consecutive transformation of p-nitro-chlorobenzene (p-NCB) and p-CA have been determined: the reaction p-NCB leads to p-CA is inhibited by nitrates, p-CA transformation occurs in the presence of nitrates in the medium and depends on their concentration. 相似文献
17.
发酵产丁二酸过程中废弃细胞的循环利用 总被引:1,自引:0,他引:1
对厌氧发酵产丁二酸后的废弃细胞进行破壁处理,考察了以细胞水解液作为有机氮源重新用于丁二酸发酵的可行性。比较了超声破碎、盐溶、酶解3种方法破碎细胞获得的水解液作为氮源发酵产丁二酸的效果,结果表明酶解制得的细胞水解液效果最佳。以总氮含量为1.11g/L的酶解液(相当于10g/L酵母膏)作为氮源发酵,丁二酸产量可达42.0g/L,继续增大酶解液用量对耗糖、产酸能力没有显著提高。将细胞酶解液与5g/L酵母膏联用发酵36h后,丁二酸产量达75.5g/L,且丁二酸生产强度为2.10g/(L·h),比使用10g/L酵母膏时提高了66.7%。因此,厌氧发酵产丁二酸结束后的废弃细胞酶解液可以替代原培养基中50%的酵母膏用于发酵。 相似文献
18.
An aerobic succinate production system developed by Lin et al. (Metab Eng, in press) is capable of achieving the maximum theoretical succinate yield of 1.0 mol/mol glucose for aerobic conditions. It also exhibits high succinate productivity. This succinate production system is a mutant E. coli strain with five pathways inactivated: DeltasdhAB, Delta(ackA-pta), DeltapoxB, DeltaiclR, and DeltaptsG. The mutant strain also overexpresses Sorghum vulgare pepc. This mutant strain is designated HL27659k(pKK313). Fed-batch reactor experiments were performed for the strain HL27659k(pKK313) under aerobic conditions to determine and demonstrate its capacity for high-level succinate production. Results showed that it could produce 58.3 g/l of succinate in 59 h under complete aerobic conditions. Throughout the entire fermentation the average succinate yield was 0.94+/-0.07 mol/mol glucose, the average productivity was 1.08+/-0.06 g/l-h, and the average specific productivity was 89.77+/-3.40 mg/g-h. Strain HL27659k (pKK313) is, thus, capable of large-scale succinate production under aerobic conditions. The results also showed that the aerobic succinate production system using the designed strain HL27659k(pKK313) is more practical than conventional anaerobic succinate production systems. It has remarkable potential for industrial-scale succinate production and process optimization. 相似文献
19.
Christian Andersson Jonas Helmerius David Hodge Kris A. Berglund Ulrika Rova 《Biotechnology progress》2009,25(1):116-123
The economical viability of biochemical succinic acid production is a result of many processing parameters including final succinic acid concentration, recovery of succinate, and the volumetric productivity. Maintaining volumetric productivities >2.5 g L?1 h?1 is important if production of succinic acid from renewable resources should be competitive. In this work, the effects of organic acids, osmolarity, and neutralizing agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3) on the fermentative succinic acid production by Escherichia coli AFP184 were investigated. The highest concentration of succinic acid, 77 g L?1, was obtained with Na2CO3. In general, irrespective of the base used, succinic acid productivity per viable cell was significantly reduced as the concentration of the produced acid increased. Increased osmolarity resulting from base addition during succinate production only marginally affected the productivity per viable cell. Addition of the osmoprotectant glycine betaine to cultures resulted in an increased aerobic growth rate and anaerobic glucose consumption rate, but decreased succinic acid yield. When using NH4OH productivity completely ceased at a succinic acid concentration of ~40 g L?1. Volumetric productivities remained at 2.5 g L?1 h?1 for up to 10 h longer when K‐ or Na‐bases where used instead of NH4OH. The decrease in cellular succinic acid productivity observed during the anaerobic phase was found to be due to increased organic acid concentrations rather than medium osmolarity. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
20.
循环利用重组大肠杆菌细胞转化合成丁二酸 总被引:1,自引:0,他引:1
研究了回收丁二酸发酵液中的大肠杆菌进行细胞转化的可行性,以转化率和生产效率为指标,考察了不同菌体浓度、底物浓度、pH调节剂对细胞转化的影响。发酵结果表明大肠杆菌可以在仅含有葡萄糖和pH调节剂的水环境中转化生产丁二酸,并确定了最佳的转化条件为:细胞浓度(OD600)50,底物浓度40g/L,缓冲盐为MgCO3。基于优化好的条件,在7L发酵罐中进行重复批次转化,第1次转化的转化率和生产效率分别达到91%和3.22g/(L·h),第2次转化的生产效率和转化率达到了86%和2.04g/(L·h),第3次转化的转化率和生产效率分别达到了83%和1.82g/(L·h)。 相似文献