首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid development of next generation sequencing (NGS) technologies in recent years has made whole genome sequencing of bacterial genomes widely accessible. However, it is often unnecessary or not feasible to sequence the whole genome for most applications of genetic analyses in bacteria. Selectively capturing defined genomic regions followed by NGS analysis could be a promising approach for high-resolution molecular typing of a large set of strains. In this study, we describe a novel and straightforward PCR-based target-capturing method, hairpin-primed multiplex amplification (HPMA), which allows for simultaneous amplification of numerous target genes. To test the feasibility of NGS-based strain typing using HPMA, 20 target gene sequences were simultaneously amplified with barcode tagging in each of 41 Salmonella strains. The amplicons were then pooled and analyzed by 454 pyrosequencing. Analysis of the sequence data, as an extension of multilocus sequence typing (MLST), demonstrated the utility and potential of this novel typing method, MLST-seq, as a high-resolution strain typing method. With the rapidly increasing sequencing capacity of NGS, MLST-seq or its variations using different target enrichment methods can be expected to become a high-resolution typing method in the near future for high-throughput analysis of a large collection of bacterial strains.  相似文献   

2.
It is widely established that chromosomal rearrangements induce oncogenesis in solid tumors. However, discovering chromosomal rearrangements that are targetable and actionable remains a difficulty. Targeting gene fusion or chromosomal rearrangement seems to be a powerful strategy to address malignancies characterized by gene rearrangement. Oncogenic NRG1 fusions are relatively rare drivers that infrequently occur across most tumor types. NRG1 fusions exhibit unique biological properties and are difficult to identify owing to their large intronic regions. NRG1 fusions can be detected using a variety of techniques, including fluorescence in situ hybridization, immunohistochemistry, or next-generation sequencing (NGS), with NGS-based RNA sequencing being the most sensitive. Previous studies have shown that NRG1 fusion protein induces tumorigenesis, and numerous therapies targeting the ErbB signaling pathway, such as ErbB kinase inhibitors and monoclonal antibodies, have initially demonstrated encouraging anticancer efficacy in malignant tumors carrying NRG1 fusions. In this review, we present the characteristics and prevalence of NRG1 fusions in solid tumors. Additionally, we discuss the laboratory approaches for diagnosing NRG1 gene fusions. More importantly, we outline promising strategies for treating malignancies with NRG1 fusion.  相似文献   

3.
Spiders are the most common and predominant predators in terrestrial ecosystems. The predatory behavior of spiders affects the energy flow across the food web within an ecosystem. Traditiaonal methods for analyzing spider diets such as field observation, anatomy and faeces analysis are not suitable for spider experiments due to spiders’ special dietary behavior. The molecular method based on the specific primers of prey DNA seems to be inefficient either in spite of its wide application in diet analysis. As the next-generation sequencing (NGS) technology becomes prevalent in many different areas, several cases of the NGS-based analysis of mammal diets have been published. This study analyzed the diet differences of Pardosa pseudoannulata (Araneae: Lycosidae) in four habitats (a wetland, a tea plantation, an alpine meadow and a paddy field) by using the NGS technology, combined with the DNA barcode method. The results suggested that the Pardosa pseudoannulata feed on a broad range of prey, and 7 orders and 24 families of insects were detected in the four investigated habitats. Moreover, it is found that the diet diversity of Pardosa pseudoannulata is greatly influenced by their living environments and seasons. In a nutshell, this study established an NGS-based methodology for spider diets analysis, and the results provided some basic materials to inform the protection and utilization of the Pardosa pseudoannulata as a potential eco-friendly predator against pests.  相似文献   

4.
Detection of antibodies in serum has many important applications. Our goal was to develop a facile general experimental approach for identifying antibody-specific peptide ligands that could be used as the reagents for antibody detection. Our emphasis was on an approach that would allow identification of peptide ligands for antibodies in serum without the need to isolate the target antibody or to know the identity of its antigen. We combined ribosome display (RD) with the analysis of peptide libraries by next generation sequencing (NGS) of their coding RNA to facilitate identification of antibody-specific peptide ligands from random sequence peptide library. We first demonstrated, using purified antibodies, that with our approach-specific peptide ligands for antibodies with simple linear epitopes, as well as peptide mimotopes for antibodies recognizing complex epitopes, were readily identified. Inclusion of NGS analysis reduced the number of RD selection rounds that were required to identify specific ligands and facilitated discrimination between specific and spurious nonspecific sequences. We then used a model of human serum spiked with a known target antibody to develop NGS-based analysis that allowed identification of specific ligands for a target antibody in the context of an overwhelming amount of unrelated immunoglobins present in serum.  相似文献   

5.
脓毒血症是一种严重威胁生命的感染,精准、快速的病原学诊断可帮助临床医师优化抗菌药物的使用。目前,基于病原菌培养的方法仍是脓毒血症病原学诊断的主要手段,但具有耗时长、灵敏度低等不可忽视的缺点。近年来出现了一些不依赖培养的病原学诊断方法,其中基于聚合酶链反应(polymerase chain reaction,PCR)的方法已发展较为成熟。但PCR只能检测已知的特定病原体,临床定量PCR仅用于检测病毒及少数细菌,脓毒血症中的病原体PCR多仅为定性检测。目前,二代测序技术不断成熟并用于临床,成为病原学诊断的有力手段。与血培养等传统病原学检测方法相比,其具有快速、非选择性、可定量或半定量分析的优点。现阶段二代测序仍存在公认判读标准缺乏、测序结果与治疗关系不明确、耐药基因检测困难等不足,亦缺乏较大规模的二代测序与传统诊断方法比较验证的研究结果,尚有待更高级的循证医学证据支持。  相似文献   

6.
Environmental DNA (eDNA)-based methods of species detection are enabling various applications in ecology and conservation including large-scale biomonitoring efforts. qPCR is widely used as the standard approach for species-specific detection, often targeting a fish species of interest from aquatic eDNA. However, DNA metabarcoding has the potential to displace qPCR in certain eDNA applications. In this study, we compare the sensitivity of the latest Illumina NovaSeq 6000 NGS platform to qPCR TaqMan assays by measuring limits of detection and by analysing eDNA from water samples collected from Churchill River and Lake Melville, NL, Canada. Species-specific, targeted next generation sequencing (NGS) assays had significantly higher sensitivity than qPCR, with limits of detection 14- to 29-fold lower. For example, when analysing eDNA, qPCR detected Gadus ogac (Greenland cod) in 21% of samples, but targeted NGS detected this species in 29% of samples. General NGS assays were as sensitive as qPCR, while simultaneously detecting 15 fish species from eDNA samples. With over 34,000 fish species on the planet, parallel and sensitive methods such as NGS will be required to support effective biomonitoring at both regional and global scales.  相似文献   

7.
Next-generation sequencing (NGS) technologies enable the rapid production of an enormous quantity of sequence data. These powerful new technologies allow the identification of mutations by whole-genome sequencing. However, most reported NGS-based mapping methods, which are based on bulked segregant analysis, are costly and laborious. To address these limitations, we designed a versatile NGS-based mapping method that consists of a combination of low- to medium-coverage multiplex SOLiD (Sequencing by Oligonucleotide Ligation and Detection) and classical genetic rough mapping. Using only low to medium coverage reduces the SOLiD sequencing costs and, since just 10 to 20 mutant F2 plants are required for rough mapping, the operation is simple enough to handle in a laboratory with limited space and funding. As a proof of principle, we successfully applied this method to identify the CTR1, which is involved in boron-mediated root development, from among a population of high boron requiring Arabidopsis thaliana mutants. Our work demonstrates that this NGS-based mapping method is a moderately priced and versatile method that can readily be applied to other model organisms.  相似文献   

8.
? Premise of the study: Next-generation sequencing (NGS) technologies are frequently used for resequencing and mining of single nucleotide polymorphisms (SNPs) by comparison to a reference genome. In crop species such as chickpea (Cicer arietinum) that lack a reference genome sequence, NGS-based SNP discovery is a challenge. Therefore, unlike probability-based statistical approaches for consensus calling and by comparison with a reference sequence, a coverage-based consensus calling (CbCC) approach was applied and two genotypes were compared for SNP identification. ? Methods: A CbCC approach is used in this study with four commonly used short read alignment tools (Maq, Bowtie, Novoalign, and SOAP2) and 15.7 and 22.1 million Illumina reads for chickpea genotypes ICC4958 and ICC1882, together with the chickpea trancriptome assembly (CaTA). ? Key results: A nonredundant set of 4543 SNPs was identified between two chickpea genotypes. Experimental validation of 224 randomly selected SNPs showed superiority of Maq among individual tools, as 50.0% of SNPs predicted by Maq were true SNPs. For combinations of two tools, greatest accuracy (55.7%) was reported for Maq and Bowtie, with a combination of Bowtie, Maq, and Novoalign identifying 61.5% true SNPs. SNP prediction accuracy generally increased with increasing reads depth. ? Conclusions: This study provides a benchmark comparison of tools as well as read depths for four commonly used tools for NGS SNP discovery in a crop species without a reference genome sequence. In addition, a large number of SNPs have been identified in chickpea that would be useful for molecular breeding.  相似文献   

9.
Somatic activating GNAS mutations cause McCune-Albright syndrome (MAS). Owing to low mutation abundance, mutant-specific enrichment procedures, such as the peptide nucleic acid (PNA) method, are required to detect mutations in peripheral blood. Next generation sequencing (NGS) can analyze millions of PCR amplicons independently, thus it is expected to detect low-abundance GNAS mutations quantitatively. In the present study, we aimed to develop an NGS-based method to detect low-abundance somatic GNAS mutations. PCR amplicons encompassing exons 8 and 9 of GNAS, in which most activating mutations occur, were sequenced on the MiSeq instrument. As expected, our NGS-based method could sequence the GNAS locus with very high read depth (approximately 100,000) and low error rate. A serial dilution study with use of cloned mutant and wildtype DNA samples showed a linear correlation between dilution and measured mutation abundance, indicating the reliability of quantification of the mutation. Using the serially diluted samples, the detection limits of three mutation detection methods (the PNA method, NGS, and combinatory use of PNA and NGS [PNA-NGS]) were determined. The lowest detectable mutation abundance was 1% for the PNA method, 0.03% for NGS and 0.01% for PNA-NGS. Finally, we analyzed 16 MAS patient-derived leukocytic DNA samples with the three methods, and compared the mutation detection rate of them. Mutation detection rate of the PNA method, NGS and PNA-NGS in 16 patient-derived peripheral blood samples were 56%, 63% and 75%, respectively. In conclusion, NGS can detect somatic activating GNAS mutations quantitatively and sensitively from peripheral blood samples. At present, the PNA-NGS method is likely the most sensitive method to detect low-abundance GNAS mutation.  相似文献   

10.
The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WT and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes.  相似文献   

11.
Personalized medicine aims to utilize genomic information about patients to tailor treatment. Gene replacement therapy for rare genetic disorders is perhaps the most extreme form of personalized medicine, in that the patients’ genome wholly determines their treatment regimen. Gene therapy for retinal disorders is poised to become a clinical reality. The eye is an optimal site for gene therapy due to the relative ease of precise vector delivery, immune system isolation, and availability for monitoring of any potential damage or side effects. Due to these advantages, clinical trials for gene therapy of retinal diseases are currently underway. A necessary precursor to such gene therapies is accurate molecular diagnosis of the mutation(s) underlying disease. In this review, we discuss the application of Next Generation Sequencing (NGS) to obtain such a diagnosis and identify disease causing genes, using retinal disorders as a case study. After reviewing ocular gene therapy, we discuss the application of NGS to the identification of novel Mendelian disease genes. We then compare current, array based mutation detection methods against next NGS-based methods in three retinal diseases: Leber’s Congenital Amaurosis, Retinitis Pigmentosa, and Stargardt’s disease. We conclude that next-generation sequencing based diagnosis offers several advantages over array based methods, including a higher rate of successful diagnosis and the ability to more deeply and efficiently assay a broad spectrum of mutations. However, the relative difficulty of interpreting sequence results and the development of standardized, reliable bioinformatic tools remain outstanding concerns. In this review, recent advances NGS based molecular diagnoses are discussed, as well as their implications for the development of personalized medicine.  相似文献   

12.
Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research.  相似文献   

13.
14.
15.
16.
Conventional PCR methods combined with linkage analysis based on short tandem repeats(STRs) or Karyomapping with single nucleotide polymorphism(SNP) arrays, have been applied to preimplantation genetic diagnosis(PGD) for spinal muscular atrophy(SMA), an autosome recessive disorder. However, it has limitations in SMA diagnosis by Karyomapping, and these methods are unable to distinguish wildtype embryos with carriers effectively. Mutated allele revealed by sequencing with aneuploidy and linkage analyses(MARSALA) is a new method allowing embryo selection by a one-step next-generation sequencing(NGS) procedure, which has been applied in PGD for both autosome dominant and X-linked diseases in our group previously. In this study, we carried out PGD based on MARSALA for two carrier families with SMA affected children. As a result, one of the couples has given birth to a healthy baby free of mutations in SMA-causing gene. It is the first time that MARSALA was applied to PGD for SMA, and we can distinguish the embryos with heterozygous deletion(carriers) from the wild-type(normal) ones accurately through this NGS-based method. In addition, direct mutation detection allows us to identify the affected embryos(homozygous deletion), which can be regarded as probands for linkage analysis, in case that the affected family member is absent. In the future, the NGS-based MARSALA method is expected to be used in PGD for all monogenetic disorders with known pathogenic gene mutation.  相似文献   

17.
18.
《Genomics》2021,113(3):1098-1113
Epigenetic inheritance occurs due to different mechanisms such as chromatin and histone modifications, DNA methylation and processes mediated by non-coding RNAs. It leads to changes in gene expressions and the emergence of new traits in different organisms in many diseases such as cancer. Recent advances in experimental methods led to the identification of epigenetic target sites in various organisms. Computational approaches have enabled us to analyze mass data produced by these methods. Next-generation sequencing (NGS) methods have been broadly used to identify these target sites and their patterns. By using these patterns, the emergence of diseases could be prognosticated. In this study, target site prediction tools for two major epigenetic mechanisms comprising histone modification and DNA methylation are reviewed. Publicly accessible databases are reviewed as well. Some suggestions regarding the state-of-the-art methods and databases have been made, including examining patterns of epigenetic changes that are important in epigenotypes detection.  相似文献   

19.
Early analytical clone screening is important during Chinese hamster ovary (CHO) cell line development of biotherapeutic proteins to select a clonally derived cell line with most favorable stability and product quality. Sensitive sequence confirmation methods using mass spectrometry have limitations in throughput and turnaround time. Next‐generation sequencing (NGS) technologies emerged as alternatives for CHO clone analytics. We report an efficient NGS workflow applying the targeted locus amplification (TLA) strategy for genomic screening of antibody expressing CHO clones. In contrast to previously reported RNA sequencing approaches, TLA allows for targeted sequencing of genomic integrated transgenic DNA without prior locus information, robust detection of single‐nucleotide variants (SNVs) and transgenic rearrangements. During clone selection, TLA/NGS revealed CHO clones with high‐level SNVs within the antibody gene and we report in another case the utility of TLA/NGS to identify rearrangements at transgenic DNA level. We also determined detection limits for SNVs calling and the potential to identify clone contaminations by TLA/NGS. TLA/NGS also allows to identify genetically identical clones. In summary, we demonstrate that TLA/NGS is a robust screening method useful for routine clone analytics during cell line development with the potential to process up to 24 CHO clones in less than 7 workdays.  相似文献   

20.
Tang HM  Chen H  Zhang J  Ren JY  Xu N 《遗传》2012,34(6):784-792
MicroRNAs(miRNAs)是一类在进化上高度保守的非编码小分子单链RNA(~22nt),在基因转录后调控中发挥至关重要的作用。越来越多的证据表明,miRNAs参与很多重要的生理和病理过程,例如发育、器官形成、调亡、细胞增殖、肿瘤发生等。近年来飞速发展的新一代测序技术在miRNA检测方面具有重要的应用。文章简要介绍了新一代测序技术3大平台的基本步骤和原理,测序数据的生物信息学分析方法以及新一代测序技术在miRNA方向的主要应用。相比于传统的miRNA检测方法,新一代测序技术具有通量高、对遗传物质检测完全且准确度高,可重复性好等优点,在探索新miRNA、miRNA互补链、miRNA编辑、miRNA异构体检测以及miRNA靶基因检测等方面具有巨大优势。随着新一代测序技术的不断发展,测序成本不断降低,在未来几年,新一代测序技术的使用率或将大大增加。新一代测序技术的不断应用将进一步促进人类对于miRNA在各种生理病理过程中的功能和调控的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号