首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global petroleum reserves are shrinking at a fast pace, increasing the demand for alternate fuels. Microalgae have the ability to grow rapidly, and synthesize and accumulate large amounts (approximately 20-50% of dry weight) of neutral lipid stored in cytosolic lipid bodies. A successful and economically viable algae based biofuel industry mainly depends on the selection of appropriate algal strains. The main focus of bioprospecting for microalgae is to identify unique high lipid producing microalgae from different habitats. Indigenous species of microalgae with high lipid yields are especially valuable in the biofuel industry. Isolation, purification and identification of natural microalgal assemblages using conventional techniques is generally time consuming. However, the recent use of micromanipulation as a rapid isolating tool allows for a higher screening throughput. The appropriate media and growth conditions are also important for successful microalgal proliferation. Environmental parameters recorded at the sampling site are necessary to optimize in vitro growth. Identification of species generally requires a combination of morphological and genetic characterization. The selected microalgal strains are grown in upscale systems such as raceway ponds or photobireactors for biomass and lipid production. This paper reviews the recent methodologies adopted for site selection, sampling, strain selection and identification, optimization of cultural conditions for superior lipid yield for biofuel production. Energy generation routes of microalgal lipids and biomass are discussed in detail.  相似文献   

2.
Rising oil prices and concerns over climate change have resulted in more emphasis on research into renewable biofuels from microalgae. Unlike plants, green microalgae have higher biomass productivity, will not compete with food and agriculture, and do not require fertile land for cultivation. However, microalgae biofuels currently suffer from high capital and operating costs due to low yields and costly extraction methods. Microalgae grown under optimal conditions produce large amounts of biomass but with low neutral lipid content, while microalgae grown in nutrient starvation accumulate high levels of neutral lipids but are slow growing. Producing lipids while maintaining high growth rates is vital for biofuel production because high biomass productivity increases yield per harvest volume while high lipid content decreases the cost of extraction per unit product. Therefore, there is a need for metabolic engineering of microalgae to constitutively produce high amounts of lipids without sacrificing growth. Substrate availability is a rate-limiting step in balancing growth and fatty acid (FA) production because both biomass and FA synthesis pathways compete for the same substrates, namely acetyl-CoA and NADPH. In this review, we discuss the efforts made for improving biofuel production in plants and microorganisms, the challenges faced in achieving lipid productivity, and the important role of precursor supply for FA synthesis. The main focus is placed on the enzymes which catalyzed the reactions supplying acetyl-CoA and NADPH.  相似文献   

3.
The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro‐algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro‐algal swimming speed provides information on culture health and total fatty acid accumulation. Three strains of Chlamydomonas reinhardtii were grown heterotrophically on acetate and subjected to various levels of nitrogen starvation. Other nutrient levels were explored to determine their effect on micro‐algal kinetics. Swimming velocities were measured with two‐dimensional micro‐particle tracking velocimetry. The results show an inverse linear relationship between normalized total fatty acid mass versus swimming speed of micro‐algal cells. Analysis of RNA sequencing data confirms these results by demonstrating that the biological processes of cell motion and the generation of energy precursors are significantly down‐regulated. Experiments demonstrate that changes in nutrient concentration in the surrounding media also affect swimming speed. The findings have the potential for the in situ and indirect assessment of lipid content by measuring micro‐algal swimming kinetics. Biotechnol. Bioeng. 2013; 110: 143–152. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Many green microalgae significantly increased their cellular neutral lipid content when cultured in nitrogen limited or high light conditions. Due to their lipid production potential, these algae have been suggested as promising feedstocks for biofuel production. However, no models for algal lipid synthesis with respect to nutrient and light have been developed to predict lipid production and to help improve the production process. A mathematical model is derived describing the growth dynamics and neutral lipid production of green microalgae grown in batch cultures. The model assumed that as the nitrogen was depleted, photosynthesis became uncoupled from growth, resulting in the synthesis and accumulation of neutral lipids. Simulation results were compared with experimental data for the green microalgae Pseudochlorococcum sp. For growth media with low nitrogen concentration, the model agreed closely with the data; however, with high nitrogen concentration the model overestimated the biomass. It is likely that additional limiting factors besides nitrogen could be responsible for this discrepancy.  相似文献   

5.
Multi-parameter flow cytometry was used to monitor cell intrinsic light scatter, viability, and lipid content of Chlorella protothecoides cells grown in shake flasks. Changes in the right angle light scatter (RALS) and forward angle light scatter (FALS) were detected during the microalgal growth, which were attributed to the different microalgal cell cycle stages. The proportion of cells not stained with PI (cells with intact cytoplasmic membrane) was high (> 90%) during the microalgal growth, even in the latter stationary phase, suggesting that the microalgal cells built-up storage materials which allowed them to survive under nutrient starvation, maintaining their cytoplasmic membranes intact. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional lipid extraction method was found for this microalga, making this method a suitable and quick technique for the screening of microalgal strains for lipid production, optimization of biofuel production bioprocesses, and scale-up studies. The highest oil content (∼28% w/w dry cell weight, estimated by flow cytometry) was observed in the latter stationary phase. In addition, C. protothecoides oil also depicted the adequate fatty acid methyl ester composition for biodiesel purposes at this growth phase, suggesting that the microalgal oil produced during the latter stationary phase could be an adequate substitute for diesel fuel. Medium growth optimization for enhancement of microalgal oil production is now in progress, using the multi-parameter approach.  相似文献   

6.
Microalgae have long been considered as potential biological feedstock for the production of wide array of bioproducts, such as biofuel feedstock because of their lipid accumulating capability. However, lipid productivity of microalgae is still far below commercial viability. Here, a glucose‐6‐phosphate dehydrogenase from the oleaginous microalga Nannochloropsis oceanica is identified and heterologously expressed in the green microalga Chlorella pyrenoidosa to characterize its function in the pentose phosphate pathway. It is found that the G6PD enzyme activity toward NADPH production is increased by 2.19‐fold in engineered microalgal strains. Lipidomic analysis reveals up to 3.09‐fold increase of neutral lipid content in the engineered strains, and lipid yield is gradually increased throughout the cultivation phase and saturated at the stationary phase. Moreover, cellular physiological characteristics including photosynthesis and growth rate are not impaired. Collectively, these results reveal the pivotal role of glucose‐6‐phosphate dehydrogenase from N. oceanica in NADPH supply, demonstrating that provision of reducing power is crucial for microalgal lipogenesis and can be a potential target for metabolic engineering.  相似文献   

7.
The potential of microalgae as a source of renewable energy has received considerable interest, but if microalgal biofuel production is to be economically viable and sustainable, further optimization of mass culture conditions are needed. Wastewaters derived from municipal, agricultural and industrial activities potentially provide cost-effective and sustainable means of algal growth for biofuels. In addition, there is also potential for combining wastewater treatment by algae, such as nutrient removal, with biofuel production. Here we will review the current research on this topic and discuss the potential benefits and limitations of using wastewaters as resources for cost-effective microalgal biofuel production.  相似文献   

8.
Under stress conditions, microalgae are known to accumulate large amounts of neutral lipids and carbohydrates, which can be used for biofuel production. However, on-line measurement of microalgal biochemical composition is a difficult task which makes the microalgal process rather difficult to manage. In this paper, we propose a so called adaptive interval observer for the on-line estimation of neutral lipid and carbohydrate quotas in microalgae. The observer is based on a change of coordinates that involves a time-varying gain. We introduce dynamics for the gain, whose trajectory converges toward a predefined optimal value (which maximizes the convergence rate of the observer). The observer performance is illustrated with experimental data of Isochrysis sp. cultures under nitrogen limitations and day–night cycle. The proposed observer design appears to be a suitable robust estimation technique.  相似文献   

9.
Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.  相似文献   

10.
Photosynthetic microalgae can capture solar energy and convert it to bioenergy and biochemical products. In nature or industrial processes, microalgae live together with bacterial communities and may maintain symbiotic relationships. In general interactions, microalgae exude dissolved organic carbon that becomes available to bacteria. In return, the bacteria remineralize sulphur, nitrogen and phosphorous to support the further growth of microalgae. In specific interactions, heterotrophic bacteria supply B vitamins as organic cofactors or produce siderophores to bind iron, which could be utilized by microalgae, while the algae supply fixed carbon to the bacteria in return. In this review, we focus on mutualistic relationship between microalgae and bacteria, summarizing recent studies on the mechanisms involved in microalgae–bacteria symbiosis. Symbiotic bacteria on promoting microalgal growth are described and the relevance of microalgae–bacteria interactions for biofuel production processes is discussed. Symbiotic microalgae–bacteria consortia could be utilized to improve microalgal biomass production and to enrich the biomass with valuable chemical and energy compounds. The suitable control of such biological interactions between microalgae and bacteria will help to improve the microalgae-based biomass and biofuel production in the future.  相似文献   

11.
Microalgae are a potential candidate for biofuel production and environmental treatment because of their specific characteristics (e.g. fast growth, carbon neutral, and rich lipid accumulations). However, several primary bottlenecks still exist in current technologies, including low biomass conversion efficiency, bio-invasion from the external environment, limited or costly nutrient sources, and high energy and capital input for harvest, and stalling its industrial progression. Coupling biofuel production with environmental treatment renders microalgae a more feasible feedstock. This review focuses on microalgae biotechnologies for both bioenergy generation and environmental treatment (e.g. CO2 sequestration and wastewater reclamation). Different intelligent technologies have been developed, especially during the last decade, to eliminate the bottlenecks, including mixotrophic/heterotrophic cultivation, immobilization, and co-cultivation. It has been realized that any single purpose for the cultivation of microalgae is not an economically feasible option. Combinations of applications in biorefineries are gradually reckoned to be necessary as it provides more economically feasible and environmentally sustainable operations. This presents microalgae as a special niche occupier linking the fields of energy and environmental sciences and technologies. The integrated application of microalgae is also proven by most of the life-cycle analysis studies. This study summarizes the latest development of primary microalgal biotechnologies in the two areas that will bring researchers a comprehensive view towards industrialization with an economic perspective.  相似文献   

12.
Microalgal biomass as feedstock for biofuel production is an attracting alternative to terrestrial plant utilization for biofuels production. However, today the microalgal cultivation systems for energy production purposes seem not yet to be economically feasible. Microalgae, though cultivated under stress conditions, such as nutrient starvation, high salinity, high temperature etc. accumulate considerable amounts (up to 60–65% of dry weight) of lipids or carbohydrates along with several secondary metabolites. Especially some of the latter are valuable compounds with an enormous range of industrial applications. The simultaneous production of lipids or carbohydrates for biofuel production and of secondary metabolites in a biorefinery concept might allow the microalgal production to be economically feasible. This paper aims to provide a review on the available literature about the cultivation of microalgae for the accumulation of high-value compounds along with lipids or carbohydrates focusing on stress cultivation conditions.  相似文献   

13.
Marine microalgae have emerged as important feedstock for liquid biofuel production. The identification of lipid-rich native microalgal species with high growth rate and optimal fatty acid profile and biodiesel properties is the most challenging step in microalgae-based biodiesel production. In this study, attempts have been made to bio-prospect the biodiesel production potential of marine and brackish water microalgal isolates from the west coast of India. A total of 14 microalgal species were isolated, identified using specific molecular markers and based on the lipid content; seven species with total lipid content above 20% of dry cell weight were selected for assessing biodiesel production potential in terms of lipid and biomass productivities, nile red fluorescence, fatty acid profile and biodiesel properties. On comparative analysis, the diatoms were proven to be promising based on the overall desirable properties for biodiesel production. The most potential strain Navicula phyllepta MACC8 with a total lipid content of 26.54 % of dry weight of biomass, the highest growth rate (0.58 day?1) and lipid and biomass productivities of 114 and 431 mgL?1 day?1, respectively, was rich in fatty acids mainly of C16:0, C16:1 and C18:0 in the neutral lipid fraction, the most favoured fatty acids for ideal biodiesel properties. The biodiesel properties met the requirements of fuel quality standards based on empirical estimation. The marine diatoms hold a great promise as feedstock for large-scale biodiesel production along with valuable by-products in a biorefinery perspective, after augmenting lipid and biomass production through biochemical and genetic engineering approaches.  相似文献   

14.
Production of biofuel from algae is dependent on the microalgal biomass production rate and lipid content. Both biomass production and lipid accumulation are limited by several factors, of which nutrients play a key role. In this research, the marine microalgae Dunaliella tertiolecta was used as a model organism and a profile of its nutritional requirements was determined. Inorganic phosphate PO4(3-) and trace elements: cobalt (Co2+), iron (Fe3+), molybdenum (Mo2+) and manganese (Mn2+) were identified as required for algae optimum growth. Inorganic nitrogen in the form of nitrate NO3- instead of ammonium (NH4+) was required for maximal biomass production. Lipids accumulated under nitrogen starvation growth condition and this was time-dependent. Results of this research can be applied to maximize production of microalgal lipids in optimally designed photobioreactors.  相似文献   

15.
Bioprocess and Biosystems Engineering - While lipid extraction from wet microalgae has attracted attention as an economical method for microalgal biofuel production, few studies have focused the...  相似文献   

16.
Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed.  相似文献   

17.
Microalgae have been exploited for biofuel generation in the current era due to its enormous energy content, fast cellular growth rate, inexpensive culture approaches, accumulation of inorganic compounds, and CO2 sequestration. Currently, research is ongoing towards the advancement of the microalgae cultivation parameters to enhance the biomass yield. The main objective of this study was to delineate the progress of physicochemical parameters for microalgae cultivation such as gaseous transfer, mixing, light demand, temperature, pH, nutrients and the culture period. This review demonstrates the latest research trends on mass transfer coefficient of different microalgae culturing reactors, gas velocity optimization, light intensity, retention time, and radiance effects on microalgae cellular growth, temperature impact on chlorophyll production, and nutrient dosage ratios for cellulosic metabolism to avoid nutrient deprivation. Besides that, cultivation approaches for microalgae associated with mathematical modeling for different parameters, mechanisms of microalgal growth rate and doubling time have been elaborately described. Along with that, this review also documents potential lipid-carbohydrate-protein enriched microalgae candidates for biofuel, biomass productivity, and different cultivation conditions including open-pond cultivation, closed-loop cultivation, and photobioreactors. Various photobioreactor types, the microalgae strain, productivity, advantages, and limitations were tabulated. In line with microalgae cultivation, this study also outlines in detail numerous biofuels from microalgae.  相似文献   

18.
Microalgal neutral lipids [mainly in the form of triacylglycerols (TAGs)], feasible substrates for biofuel, are typically accumulated during the stationary growth phase. To make microalgal biofuels economically competitive with fossil fuels, generating strains that trigger TAG accumulation from the exponential growth phase is a promising biological approach. The regulatory mechanisms to trigger TAG accumulation from the exponential growth phase (TAEP) are important to be uncovered for advancing economic feasibility. Through the inhibition of pyruvate dehydrogenase kinase by sodium dichloroacetate, acetyl‐CoA level increased, resulting in TAEP in microalga Dunaliella tertiolecta. We further reported refilling of acetyl‐CoA pool through branched‐chain amino acid catabolism contributed to an overall sixfold TAEP with marginal compromise (4%) on growth in a TAG‐rich D. tertiolecta mutant from targeted screening. Herein, a three‐step α loop‐integrated metabolic model is introduced to shed lights on the neutral lipid regulatory mechanism. This article provides novel approaches to compress lipid production phase and heightens lipid productivity and photosynthetic carbon capture via enhancing acetyl‐CoA level, which would optimize renewable microalgal biofuel to fulfil the demanding fuel market.  相似文献   

19.
Coupling of advanced wastewater treatment with microalgae cultivation for low-cost lipid production was demonstrated in this study. The microalgal species Micractinium reisseri and Scenedesmus obliquus were isolated from municipal wastewater mixed with agricultural drainage. M. reisseri was selected based on the growth rate and cultivated in municipal wastewater (influent, secondary and tertiary effluents) which varied in nutrient concentration. M. reisseri showed an optimal specific growth rate (μopt) of 1.15, 1.04, and 1.01 1/day for the influent and the secondary and tertiary effluents, respectively. Secondary effluent supported the highest phosphorus removal (94%) and saturated fatty acid content (40%). The highest lipid content (40%), unsaturated fatty acid content, including monounsaturated and polyunsaturated fatty acids (66%), and nitrogen removal (80%) were observed for tertiary effluent. Fatty acids accumulating in the microalgal biomass (M. reisseri) were mainly composed of palmitic acid, oleic acid, linoleic acid, and a-linolenic acid. Cultivation of M. reisseri using municipal wastewater served a dual function of nutrient removal and biofuel feedstock generation.  相似文献   

20.
Biodiesel is a renewable fuel produced mostly from edible and non‐edible vegetables, by transesterification of neutral lipids (triacylglycerols). However, vegetable oil‐based biodiesel production competes with food crops for arable land, increasing food prices and leading to biodiversity loss. The production of biodiesel from oleaginous microorganisms – particularly microalgae – has attracted attention due to the higher lipid productivity of these organisms, when compared with vegetables. Several environmental factors – including light, temperature, pH and the presence of nutrients (particularly nitrogen, phosphorus and iron) – influence directly the ability of microalgae to produce and store triacylglycerols and other lipids, and also modulate microalgal growth. Although some environmental factors affect several species in a similar manner, differential responses between species are frequent, highlighting the importance of identifying optimal cultivation conditions for each species, to balance growth and lipid productivity for biodiesel production. Here, we reviewed the particular influence of the physicochemical and nutritional factors on the growth and lipid productivity of different green oleaginous microalgae species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号