首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Rice ragged stunt oryzavirus (RRSV) replicates in both its insect vector, Nilaparvata lugens, and its plant host, rice, and has a complex multi-component particle bearing spikes on its outer surface. Transgenic rice lines expressing the 39 kDa spike protein showed good resistance to infection by RRSV. Furthermore, N. lugens fed on these plants prior to feeding on RRSV-infected plants were significantly protected against RRSV infection. The viral titre in insects initially fed on transgenic plants and then on RRSV-infected plants was inversely proportional to the levels of the 39 kDa protein expressed in the transgenic plants. This suggests that the 39 kDa protein interferes with the interaction between the intact virus particles and insect cell receptors and that the spike protein of RRSV contributes to vector specificity. This approach would probably be a more environment-friendly and sustainable method of virus control than by actual eradication of insect vectors.  相似文献   

2.
The effects of rice plants treated with various pesticides (jingganmycin, bisultap and methamidophos) on feeding, survival rates and population growth of Nilaparvata lugens Stål (Homoptera: Delphacidae), susceptibility of the treated rice plants and amounts of free amino acids and sucrose were studied. Experiments indicated that the effects of the tested pesticides were dependent on nymphal age, pesticide and their dose and time after application. Jingganmycin at 75 g a.i. ha–1 significantly increased the N. lugens population. Both jingganmycin and bisultap increased the survival rate of N. lugens nymphs. The feeding rate of the insects was also affected by the pesticide application, but the effect varied between nymphal age and time after application and lasted no longer than 15 d. Results clearly indicated that pesticide application increased the susceptibility of rice plants to N. lugens. Although the free amino acids in rice plants did not change with the pesticide treatments, the concentration of sucrose significantly decreased 5 d after application and the C/N ratio significantly decreased in jingganmycin treated plants 5 d and 10 d after application.  相似文献   

3.
Abstract. 1. A series of laboratory experiments was conducted to explore the effects of inter‐specific interactions, both direct interactive effects and those induced through previous feeding, on the dispersal capability (proportion of macropterous adults) and performance (development time and survival) of two wing‐dimorphic planthoppers, the whitebacked planthopper Sogatella furcifera and the brown planthopper Nilaparvata lugens, two pests of rice throughout Asia. 2. An asymmetric effect of inter‐specific crowding on dispersal capability was detected between the two planthoppers. With density controlled, the proportion of macropterous adults in N. lugens was higher when raised in mixed populations with S. furcifera than in pure cultures comprised of conspecifics, suggesting that interspecific effects on dispersal capability are stronger than intraspecific effects. In contrast, interspecific effects on macroptery (%) were weaker than intraspecific impacts for S. furcifera. 3. This trend was parallelled by adverse competitive effects on survival, with interspecific effects stronger than intraspecific impacts for N. lugens and intraspecific effects stronger for S. furcifera. 4. Crowding also affected the incidence of macroptery indirectly through feeding‐induced changes in plant physiology. Rearing N. lugens on plants fed on previously by heterospecifics resulted in a higher incidence of macroptery in females and protracted development than for N. lugens raised on plants fed on previously by conspecifics. By contrast, the intraspecific effect of previous feeding was stronger than the interspecific effect in S. furcifera, with higher macropter production and prolonged development occurring on plants exposed previously to conspecifics. 5. The results suggest that interspecific interactions between herbivorous insects, both direct and via feeding‐induced changes in plant physiology, can have negative consequences for performance and survival and promote the production of flight‐capable adults that can disperse.  相似文献   

4.
The adoption of pest‐resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops.  相似文献   

5.
This study examines the nature of intraspecific interactions among Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) planthoppers feeding on resistant and susceptible rice varieties. Planthopper nymphs produced less honeydew and gained less weight when feeding on rice variety IR62 (resistant) compared to susceptible rice varieties. A series of bioassays was conducted that varied N. lugens nymph densities on IR62 and IR22 (susceptible). Increasing nymph density facilitated feeding by conspecifics; however, intraspecific competition increased mortality of nymphs on IR62 (but rarely on IR22). Furthermore, nymph weights declined with increasing conspecific density on IR22, and the effects were weak on IR62. More female nymphs than males survived on IR62 but this was not affected by density. Nitrogenous fertilizer increased competition among N. lugens on young plants of IR22, but not on IR62. Results indicate that nymphs have a low efficiency in accessing resources when feeding on IR62, even where the plants have received fertilizer. Female‐biased survival and biomass compensation for mortality may promote population recovery after development on the resistant plant and accelerate adaptation to the resistant variety.  相似文献   

6.
Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non‐biassed metabolomics approach to identify many novel herbivory‐regulated metabolic signatures in rice. Most were up‐regulated by herbivore attack while only a few were suppressed. Two of the most prominent up‐regulated signatures were characterized as phenolamides (PAs), p‐coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p‐coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.  相似文献   

7.
Five transgenic rice lines, each containing an insecticidal toxin gene from Bacillus thuringiensis (Bt) under control of a different promoter, were tested for effects on two non-target insects: the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), and its predator Cyrtorhinus lividipennis (Hemiptera: Miridae). Bt toxin was detected by ELISA in the honeydew of N. lugens that fed on rice lines with the CaMV 35S and actin promoters. Nilaparvata lugens produced greater volumes of acidic honeydew (derived from xylem feeding) on all five Bt rice lines than on non-transgenic control lines. The amount of honeydew derived from phloem feeding did not differ between Bt and control lines. There were no differences between N. lugens reared on Bt and control lines in any of the five fitness parameters measured (survival to the adult stage, male and female weight, and male and female developmental time). There were no differences between C. lividipennis reared on N. lugens nymphs from Bt and control lines, in any of the three fitness parameters examined (survival to the adult stage and male and female developmental time). Our results indicate that N. lugens and its natural enemies will be exposed to Bt toxins from rice lines transformed with some Bt gene constructs, but that this exposure might not affect N. lugens and C. lividipennis fitness.  相似文献   

8.
In agro-ecosystems,plants are important mediators of interactions between their associated herbivorous insects and microbes,and any change in plants induced by one species may lead to cascading effects on interactions with other species.Often,such effects are regulated by phytohormones such as jasmonic acid(JA)and salicylic acid(SA).Here,we investigated the tripartite interactions among rice plants,three insect herbivores(Chilo suppressalis,Cnaphalocrocis medinalis or Nilapai-vata lugens),and the causal agent of rice blast disease,the fungus Magnaporthe oryzae.We found that pre-infestation of rice by C.suppressalis or N.lugens but not by C.medinalis conferred resistance to M.oryzae.For C.suppressalis and N.lugens,insect infestation without fungal inoculation induced the accumulation of both JA and SA in rice leaves.In contrast,infestation by C.medinalis increased JA levels but reduced SA levels.The exogenous application of SA but not of JA conferred resistance against M.oryzae.These results suggest that preinfestation by C suppressalis or N.lugens conferred resistance against M.oryzae by increasing SA accumulation.These findings enhance our understanding of the interactions among rice plant,insects and pathogens,and provide valuable information for developing an ecologically sound strategy for controlling rice blast.  相似文献   

9.
Nilaparvata lugens (Stål) is a major rice pest in Asia. Paichongding is a novel neonicotinoid insecticide developed in 2008. The effects of this insecticide on the activity of detoxification enzymes of N. lugens and on rice resistance to the pest were examined in the laboratory. The results showed that paichongding could significantly decrease the acetylcholinesterase and GSHs transferase activities of N. lugens. The variation tendency of mixed function oxidase (MFO) activity was similar with that of the esterase. After 12 h treatment, there was no significance between the treatment and control. However, the activities of MFO and esterase increased after 24 and 48 h treatment, which suggested that MFO and esterase may play an important role in the detoxification of paichongding for N. lugens. Our results also demonstrated that treated with paichongding, damage levels of rice plants were significantly lower than those of control plants except 15 days after treatment. Compared with the control, injury indices decreased 70.22, 49.12, 34.44, and 23.23% at 3 , 6 , 9, and 12 days after paichongding treatment, respectively. The laboratory results suggested that paichongding may be effective for the control of brown planthopper.  相似文献   

10.
Plants produce a broad variety of defensive metabolites to protect themselves against herbivorous insects. Although polyamines have been implicated in various responses to abiotic and biotic stress, there have been no studies focused on amines in response to insect herbivory. By screening for bioactive amines, we identified isopentylamine as a novel type of herbivory‐induced compound in rice leaves, which was derived from the amino acid leucine in stable isotope labelling experiments. Accumulation of isopentylamine increased during herbivory by the brown planthopper (Nilaparvata lugens, BPH) and the rice‐feeding armyworm (Mythimna loreyi), as well as in response to treatment with the plant hormone, jasmonic acid. Likewise, isopentylamine accumulation was compromised in rice jasmonate biosynthesis mutants, hebiba and Osjar1. In bio‐assays, BPH insects feeding on rice seedlings submerged in 50 mg/L isopentylamine solution had a higher mortality compared with BPH feeding on seedlings submerged in water. Notably, the rice leaves submerged in 50 mg/L solution showed the endogenous concentrations of isopentylamine similar to that induced by BPHs. These results suggest that isopentylamine functions as a new type of plant defence metabolite that is rapidly induced by herbivore attack and deters insect herbivores in rice.  相似文献   

11.
Abstract Nilaparvata lugens (Stål) (Hemiptera: Geometroidea), a serious rice pest in many countries of Asia, causes a great loss in rice production every year. RNA interference (RNAi) is a powerful technology for gene function study in insects and a potential tool for pest control. As a core component of RNAi pathway, Dicer‐2 (Dcr‐2) protein determines the production of small interfering RNA (siRNA) and is crucial for the efficiency of RNAi. In this study, the full‐length complementary DNA (cDNA) of N. lugens Dcr‐2 (NlDcr‐2) was first cloned and analyzed, and then the RNAi experiment was conducted to explore the function of NlDcr‐2 gene. The complete Dcr‐2 cDNA of N. lugens was 4 971 bp in length with an open reading frame (ORF) of 1,656 amino acids. Phylogenetic and protein domain analysis showed that the predicted NlDcr‐2 protein was similar to Tribolium castaneum. In the RNAi experiment, the messenger RNA level of NlDcr‐2 was significantly reduced by NlDcr‐2 double‐stranded RNA (dsRNA) (dsDcr‐2). Fifty‐five per cent decrease of NlDcr‐2 was found after 4 days of unremitting feeding. No significant effect was observed on the development of N. lugens after dsRNA ingestion.  相似文献   

12.
13.
Chemosensory proteins (CSPs) play important roles in insects’ chemoreception, although their specific functional roles have not been fully elucidated. In this study, we conducted the developmental expression patterns and competitive binding assay as well as knock‐down assay by RNA interference both in vitro and in vivo to reveal the function of NlugCSP10 from the brown planthopper (BPH), Nilaparvata lugens (Stål), a major pest in rice plants. The results showed that NlugCSP10 messenger RNA was significantly higher in males than in females and correlated to gender, development and wing forms. The fluorescence binding assays revealed that NlugCSP10 exhibited the highest binding affinity with cis‐3‐hexenyl acetate, eicosane, and (+)‐β‐pinene. Behavioral assay revealed that eicosane displayed attractant activity, while cis‐3‐hexenyl acetate, similar to (+)‐β‐pinene significantly repelled N. lugens adults. Silencing of NlugCSP10, which is responsible for cis‐3‐hexenyl acetate binding, significantly disrupted cis‐3‐hexenyl acetate communication. Overall, findings of the present study showed that NlugCSP10 could selectively interrelate with numerous volatiles emitted from host plants and these ligands could be designated to develop slow‐release mediators that attract/repel N. lugens and subsequently improve the exploration of plans to control this insect pest.  相似文献   

14.
Abstract The widespread use of imidacloprid against insect pests has not only increased the rate of the development of target pest resistance but has also resulted in various negative effects on rice plants and Nilaparvata lugens resurgence. However, the effect of imidacloprid on elements in rice plants and the transference of these element changes between rice and N. lugens are currently poorly understood. The present study investigated changes of Cu, Fe, Mn, Zn, Ca, K, Mg and Na contents in rice plants following imidacloprid foliar sprays in the adult female of N. lugens that develops from nymphs that feed on treated plants and honeydew produced by females. The results indicated that imidacloprid foliar spray significantly increased Fe and K contents in leaf sheaths. Generally, Fe, Mn, K and Na contents in leaf blades were noticeably decreased, but Ca contents in leaf blades for 10 and 30 mg/kg imidacloprid treatments were significantly increased. The contents of most elements except K and Mg in the adult females and honeydew were significantly elevated. Multivariate statistical analysis showed that Fe, Mn and Na in leaf blades and Fe and Mn in leaf sheaths could be proportionally transferred to N. lugens. The relationship between most elements in adult female bodies and in the honeydew showed a positive correlation coefficient. There were significant differences in the contents of some elements in rice plants and N. lugens from different regions.  相似文献   

15.
16.
Nitrogen is a critical factor for plant development and nitrogen input is one of the important tactics to enhance the development and yield of crops. Nevertheless, nitrogen input could influence the occurrence of insects positively or negatively. Nitrogen is also one of the main elements composing the insecticidal crystal (Cry) protein. Cry protein production could affect nitrogen partitioning in Bt plants and as such nitrogen input may influence insect pest management in transgenic Bt rice, Oryza sativa L. (Poaceae). To test this possibility, we evaluated the impacts of nitrogen regimes on the main insect pests and their predators on two Bt rice lines, T2A‐1 and T1C‐19, expressing Cry2A and Cry1C, respectively, and their non‐transgenic parental counterpart MH63. The results showed that Cry proteins with different nitrogen regimes have enough insecticidal activity on rice leaffolder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Crambidae), in both laboratory and field experiments. Laboratory studies indicated that relevant parameters of ecological fitness in brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a non‐target insect pest, were significantly affected by nitrogen input both on Bt and MH63 rice lines. Nymphal survival, female adult longevity, and egg hatchability in N. lugens differed significantly among rice varieties. The experiments conducted in rice fields also demonstrated that nitrogen was positively correlated with the abundance of N. lugens on Bt rice, similar to that on MH63 rice. The abundances of two predators – the wolf spider Pirata subpiraticus (Boesenberg & Strand) (Araneae: Lycosidae) and the bug Cyrthorhinus lividipennis Reuter (Hemiptera: Miridae) – were significantly affected by rice growth stages but not by nitrogen input and rice varieties. In conclusion, the above results indicate that high nitrogen regimes for Bt rice (T2A‐1 and T1C‐19) and non‐Bt rice (MH63) cannot facilitate the management of insect pests.  相似文献   

17.
RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.  相似文献   

18.
The brown planthopper (BPH), Nilaparvata lugens (Stål) (Homoptera: Delphacidae) is a major pest of many rice growing countries worldwide. It has been observed that one rice field is severely infested by BPH while an adjacent field left untouched. We hypothesized that differences in nutrient content in rice plants may explain this behavior. BPH feeding and oviposition behavior was evaluated on rice plants that had been grown under a range of fertilizer treatments. Tissue samples from experimental rice plants were analyzed for percent N, P, K, Si, free sugars and soluble proteins which were regressed with BPH host choice parameters. A completely randomized design with four replications in a factorial scheme was used in experiments where levels of soil N, P and K were taken as factors. Nymph feeding preference did not differ significantly among different nutrient treated rice plants. Adult females preferred to feed and oviposit on rice plants fertilized with N but it showed negative preference with K supplementation, while P had no marked effect. The position of feeding and ovipositing shifted gradually from lower to upper of leaf sheath and then to leaf blade with decrease of N fertilization to the rice plant. Host choice of BPH for feeding and ovipositing were positively associated with plant tissue concentrations of N, total free sugars and soluble proteins, negatively with Si but not with P and K. Plant tissue biochemical those are associated with BPH host preference may regulate how fast and where they settle on a rice plant.  相似文献   

19.
Biochemical and enzymatic changes in rice plants as a mechanism of defense   总被引:1,自引:0,他引:1  
A laboratory study was undertaken to ascertain the impact and the extent of feeding by different pests on biochemical constituents and various enzyme levels in rice plants. The difference in these parameters due to the pest damage by three different modes of feeding was also studied and compared. The borer pest—yellow stem borer (YSB), Scirpophaga incertulas (W); surface feeder—-leaf roller (LR), Cnaphalocrosis medinalis (G) and a sucking pest—brown plant hopper (BPH), Nilaparvata lugens (S) fed rice plants were analyzed for the quantitative and qualitative changes in biochemical profile and enzymatic changes that occur as plant’s defensive responses were analyzed spectrophotometrically. The phenolic acids were analyzed using HPLC and quantitated with the standard samples. The quantity of biochemicals such as proteins, phenols and carbohydrates has been enhanced along with the enzyme activities of peroxidase (POD), catalase (CAT), chitinase (CHI). A decrease in superoxide dismutase (SOD), phenyl alanine ammonia lyase (PAL), β-1, 3-glucanase (GLU) enzyme activities were evident in pest infested plants. Phenolic acids like vanillic acid, syringic acid, cinnamic acid, and p-coumaric acids were mostly found in the infested plants. We demonstrate that the elevated levels of biochemicals, phenolic acids, and enzymes may play a major role in plant defense.  相似文献   

20.
Genetically engineered (GE) rice lines expressing Lepidoptera‐active insecticidal cry genes from the bacterium Bacillus thuringiensis (Bt) have been developed in China. Field surveys indicated that Bt rice harbours fewer rice planthoppers than non‐Bt rice although planthoppers are not sensitive to the produced Bt Cry proteins. The mechanisms underlying this phenomenon remain unknown. Here, we show that the low numbers of planthoppers on Bt rice are associated with reduced caterpillar damage. In laboratory and field‐cage experiments, the rice planthopper Nilapavata lugens had no feeding preference for undamaged Bt or non‐Bt plants but exhibited a strong preference for caterpillar‐damaged plants whether Bt or non‐Bt. Under open‐field conditions, rice planthoppers were more abundant on caterpillar‐damaged non‐Bt rice than on neighbouring healthy Bt rice. GC–MS analyses showed that caterpillar damage induced the release of rice plant volatiles known to be attractive to planthoppers, and metabolome analyses revealed increased amino acid contents and reduced sterol contents known to benefit planthopper development. That Lepidoptera‐resistant Bt rice is less attractive to this important nontarget pest in the field is therefore a first example of ecological resistance of Bt plants to nontarget pests. Our findings suggest that non‐Bt rice refuges established for delaying the development of Bt resistance may also act as a trap crop for N. lugens and possibly other planthoppers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号