首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Zheng  Fanglin  Cao  Yanli  Lv  Xinxing  Wang  Lei  Li  Chunyan  Zhang  Weixin  Chen  Guanjun  Liu  Weifeng 《Applied microbiology and biotechnology》2017,101(5):2067-2078

Trichoderma reesei represents an important workhorse for industrial production of cellulases as well as other proteins. The molecular mechanism underlying the regulation of cellulase production as well as other physiological processes in T. reesei is still insufficiently understood. We constructed a P tcu1 -based promoter substitution cassette that allowed one-step replacement of the endogenous promoter for controlling the target gene expression with copper. We then showed that copper repression of the histone acetyltransferase gene gcn5 phenocopied the gcn5 deletion strain. Using the same strategy, we further characterized the function of another putative Spt-Ada-Gcn5 acetyltransferase (SAGA) complex subunit encoding gene, ada2, in T. reesei. Similar to the repression of gcn5, the addition of copper to the P tcu1 -ada2 strain not only drastically reduced the vegetative growth and conidiation in T. reesei but also severely compromised the induced cellulase gene expression. The developed strategy will thus be potentially useful to probe the biological function of the large fraction of T. reesei genes with unknown functions including those essential genes in the genome to expand its extraordinary biotechnological potential.

  相似文献   

4.
5.
The ascomycete Hypocrea jecorina, an industrial (hemi)cellulase producer, can efficiently degrade plant polysaccharides. At present, the biology underlying cellulase hyperproduction of T. reesei, and the conditions for the enzyme induction, are not completely understood. In the current study, three different strains of T. reesei, including QM6a (wild-type), and mutants QM9414 and RUT-C30, were grown on 7 soluble and 7 insoluble carbon sources, with the later group including 4 pure polysaccharides and 3 lignocelluloses. Time course experiments showed that maximum cellulase activity of QM6a and QM9414 strains, for the majority of tested carbon sources, occurred at 120 hrs, while RUT-C30 had the greatest cellulase activity around 72 hrs. Maximum cellulase production was observed to be 0.035, 0.42 and 0.33 µmol glucose equivalents using microcrystalline celluloses for QM6a, QM9414, and RUTC-30, respectively. Increased cellulase production was positively correlated in QM9414 and negatively correlated in RUT-C30 with ability to grow on microcrystalline cellulose.  相似文献   

6.
7.
We characterized the effect of deletion of the Trichoderma reesei (Hypocrea jecorina) ace1 gene encoding the novel cellulase regulator ACEI that was isolated based on its ability to bind to and activate in vivo in Saccharomyces cerevisiae the promoter of the main cellulase gene, cbh1. Deletion of ace1 resulted in an increase in the expression of all the main cellulase genes and two xylanase genes in sophorose- and cellulose-induced cultures, indicating that ACEI acts as a repressor of cellulase and xylanase expression. Growth of the strain with a deletion of the ace1 gene on different carbon sources was analyzed. On cellulose-based medium, on which cellulases are needed for growth, the Δace1 strain grew better than the host strain due to the increased cellulase production. On culture media containing sorbitol as the sole carbon source, the growth of the strain with a deletion of the ace1 gene was severely impaired, suggesting that ACEI regulates expression of other genes in addition to cellulase and xylanase genes. A strain with a deletion of the ace1 gene and with a deletion of the ace2 gene coding for the cellulase and xylanase activator ACEII expressed cellulases and xylanases similar to the Δace1 strain, indicating that yet another activator regulating cellulase and xylanase promoters was present.  相似文献   

8.
9.
The effects of varying initial concentrations of microcrystalline cellulose on cellulase production with Trichoderma reesei RUT-C30 as well as the effects of varying lactose and ammonium sulfate concentrations in the feed medium were studied simultaneously in parallel-operated shake flasks and, alternatively, in parallel-operated stirred-tank bioreactors on a 10-mL scale. Fifteen experiments were performed as triplicates in shake flasks as well as in stirred-tank bioreactors in parallel to identify the parameters of second-order polynomials for the estimation of the final filter paper activity of T. reesei RUT-C30 after a process time of 96 h. Even though parameter estimation was not possible based on the results of the shake flasks due to final enzyme activities at or below the detection limit (with the exception of one shake flask), the identification of the second-order polynomial was successful with the results of the parallel-operated stirred-tank bioreactors on a 10-mL scale. Reaction conditions with 53.3 g L?1 microcrystalline cellulose in the initial medium, no lactose feeding and 3.3 g L?1 day?1 intermittent ammonium sulfate addition were estimated to be optimal. The final experimental validation of the optimum substrate supply on a L-scale resulted in the production of 4.88 filter paper units (FPU) mL?1 with T. reesei RUT-C30 after 96 h. This is an improvement by a factor of 3.6 compared to the reference batch process (1.35 FPU mL?1).  相似文献   

10.
To investigate whether enzyme production can be enhanced in the Trichoderma reesei industrial hyperproducer strain RUT C30 by manipulation of cellulase regulation, the positive regulator Xyr1 was constitutively expressed under the control of the strong T. reesei pdc promoter, resulting in significantly enhanced cellulase activity in the transformant during growth on cellulose. In addition, constitutive expression of xyr1 combined with downregulation of the negative regulator encoding gene ace1 further increased cellulase and xylanase activities. Compared with RUT C30, the resulting transformant exhibited 103, 114, and 134 % greater total secreted protein levels, filter paper activity, and CMCase activity, respectively. Surprisingly, strong increases in xyr1 basal expression levels resulted in very high levels of CMCase activity during growth on glucose. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression, and suggest an attractive new single-step approach for increasing total cellulase productivity in T. reesei.  相似文献   

11.
Thecre1 genes of the filamentous fungiTrichoderma reesei andT. harzianum were isolated and characterized. The deduced CREI proteins are 46% identical to the product of the glucose repressor genecreA ofAspergillus nidulans, encoding a DNA-binding protein with zinc fingers of the C2H2 type. Thecre1 promoters contain several sequence elements that are identical to the previously identified binding sites forA. nidulans CREA. Steady-state mRNA levels forcre1 of theT. reesei strain QM9414 varied depending on the carbon source, being low on glucose-containing media. These observations suggest thatcre1 expression may be autoregulated. TheT. reesei strain Rut-C30, a hyperproducer of cellulolytic enzymes, was found to express a truncated form of thecre1 gene (cre1-1) with an ORF corresponding to a protein of 95 amino acids with only one zinc finger. Unlike QM9414 the strain Rut-C30 produced cellulase mRNAs on glucose-containing medium and transformation of the full-lengthcre1 gene into this strain caused glucose repression ofcbh1 expression, demonstrating thatcre1 regulates cellulase expression.  相似文献   

12.
13.
14.
15.
Summary Enzyme preparations fromTrichoderma reesei RUT-C30, in addition to cellulase, contained various glucanase and glucosidase, acetylxylan esterase, glucuronidase and xylanase activities. These preparations were able to hydrolyse endosperm cell walls of corn and wheat and commercially-available xylans and plant gums having stright chains, but lacked the ability to hydrolyse branched or substituted hemicelluloses.
Formation d'enzymes requises pour l'hydrolyse des polysaccharides de la paroi de plantes chez Trichoderma reesei
Résumé Les préparations enzymatiques deTrichoderma reesei RUT-C30, contiennent, outre la cellulase, diverses glucanases et glucosidases, acétyl-xylane esterases, glucuronidases et xylanases. Ces préparations demeurent stables pour l'hydrolyse de parois cellulaires de l'endosperme de maïs et de froment ainsi que des xylanes et gommes de plantes à chaînes linéaires, disponibles dans le commerce, mais ne présentent pas le pouvoir d'hydrolyser les hémicelluloses branchées ou substituées.


Issued as NRCC No. 29855  相似文献   

16.
17.
18.
We constructed a recombinant industrial Saccharomyces cerevisiae yeast strain OC2-AXYL2-ABGL2-Xyl2 by inserting two copies of the β-glucosidase (BGL) and β-xylosidase (XYL) genes, and a gene cassette for xylose assimilation in the genome of yeast strain OC-2HUT. Both BGL and XYL were expressed on the yeast cell surface with high enzyme activities. Using OC2-AXYL2-ABGL2-Xyl2, we performed ethanol fermentation from a mixture of powdered cellulose (KC-flock) and Birchwood xylan, with the additional supplementation of a 30-g/l Trichoderma reesei cellulase complex mixture. The ethanol yield (gram per gram of added cellulases) of the strain OC2-AXYL2-ABGL2-Xyl2 increased approximately 2.5-fold compared to that of strain OC2-Xyl2, which lacked β-glucosidase and β-xylosidase activities. Notably, the concentration of additional T. reesei cellulase was reduced from 30 to 24 g/l without affecting ethanol production. The BGL- and XYL-displaying industrial yeast of the strain OC2-AXYL2-ABGL2-Xyl2 represents a promising yeast for reducing cellulase consumption of ethanol fermentation from lignocellulosic biomass by compensating for the inherent weak BGL and XYL activities of T. reesei cellulase complexes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号