首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Captive Asian elephants Elephas maximus , used as work animals, constitute up to 22–30% of remaining Asian elephants. Myanmar has the largest captive population worldwide (∼6000), maintained at this level for over a century. We used published demographic data to assess the viability of this captive population. We tested how this population can be self-sustained, how many elephants must be supplemented from the wild to maintain it, and what consequences live capture may have for Myanmar's wild population. Our results demonstrate that the current captive population is not self-sustaining because mortality is too high and birth rates are too low. Our models also suggest ∼100 elephants year−1 have been captured in the wild to supplement the captive population. Such supplementation cannot be supported by a wild population of fewer than 4000 elephants. Given the most recent expert estimate of ∼2000 wild elephants remaining in Myanmar, a harvest of 100 elephants year−1 could result in extinction of the wild population in 31 years. Continued live capture threatens the survival of wild and captive populations and must stop. In addition, captive breeding should be increased. These measures are essential to slow the decline and extinction of all of Myanmar's elephants.  相似文献   

3.
The capercaillie inhabits a continuous range in large parts of the Palearctic boreal forest, but is patchily distributed in temperate Europe. An ongoing population decline, largely related to human land use changes, has been most pronounced in central and western Europe, where some local populations have become extinct. In this study, we document the genetic differentiation of capercaillie populations at different stages along a gradient of spatial structuring from high connectivity (continuous range in the boreal forest) to a metapopulation systems (Alps) and recent (central Europe) and historic (Pyrenees) isolation. Four hundred and sixty individuals from 14 sample sites were genotyped at 10 polymorphic microsatellite loci to assess genetic structure and variation of capercaillie populations across its European range. As expected, differentiation was least pronounced within the continuous range in the boreal forest. Within the metapopulation system of the Alps, differentiation was less than among the isolated populations of central Europe (Black Forest, Fichtelgebirge, Thuringia, Vosges). In the long-isolated population of the Pyrenees, and the recently isolated populations of central Europe, genetic diversity was significantly reduced compared with the Alps and boreal forest. Our results agree with the concept of a gradual increase in genetic differentiation from connectivity to isolation, and from recent to historic isolation. Anthropogenic habitat deterioration and fragmentation thus not only leads to range contractions and extinctions, but may also have significant genetic and evolutionary consequences for surviving populations. To maintain high levels of genetic variation in species in fragmented habitats, conservation should aim at securing connectivity between spatially distinct populations.  相似文献   

4.
Volcanic activity on the island of Hawaii results in a cyclical pattern of habitat destruction and fragmentation by lava, followed by habitat regeneration on newly formed substrates. While this pattern has been hypothesized to promote the diversification of Hawaiian lineages, there have been few attempts to link geological processes to measurable changes in population structure. We investigated the genetic structure of three species of Hawaiian spiders in forests fragmented by a 150-year-old lava flow on Mauna Loa Volcano, island of Hawaii: Tetragnatha quasimodo (forest and lava flow generalist), T. anuenue and T. brevignatha (forest specialists). To estimate fragmentation effects on population subdivision in each species, we examined variation in mitochondrial and nuclear genomes (DNA sequences and allozymes, respectively). Population subdivision was higher for forest specialists than for the generalist in fragments separated by lava. Patterns of mtDNA sequence evolution also revealed that forest specialists have undergone rapid expansion, while the generalist has experienced more gradual population growth. Results confirm that patterns of neutral genetic variation reflect patterns of volcanic activity in some Tetragnatha species. Our study further suggests that population subdivision and expansion can occur across small spatial and temporal scales, which may facilitate the rapid spread of new character states, leading to speciation as hypothesized by H. L. Carson 30 years ago.  相似文献   

5.
6.
While habitat disturbance and food availability are major factors thought to determine the abundance of primates, evidence for their importance is uneven. We assessed the effects of these factors on three monkey species, guerezas ( Colobus guereza ) , blue monkeys ( Cercopithecus mitis ) and redtails ( Cercopithecus ascanius ), in four areas of the Kakamega Forest, Kenya. Group densities of guerezas and blue monkeys were higher in areas where disturbance levels were also higher. Food availability measured as basal area density of food trees did not correlate significantly with the group densities of any of the three monkeys. The diversity of food trees, another potential measure of food abundance did, however, correlate with group densities of guerezas and blue monkeys suggesting that food availability may positively influence monkey density, and may sometimes increase with disturbance. Group densities of redtails did not correlate with any habitat variable examined, suggesting that factors other than those we considered may have influenced the abundance of this species particularly.  相似文献   

7.
8.
Accelerated deforestation is causing the rapid loss and fragmentation of primary habitat for primates. Although the genus Alouatta is one of the most studied primate taxa under these circumstances, some results are contradictory and responses of howlers to habitat fragmentation are not yet clear. In this paper, we conduct a cross-study of the available researches on mantled howlers (Alouatta palliata) in forest fragments in Los Tuxtlas, Mexico, to (1) describe the diet and activity pattern of howlers; (2) analyze the similarity in the diet across studies; and (3) relate both fragment size and howler population density with different characteristics of their diet, home range size, and activity pattern. Howlers consumed 181 plant species belonging to 54 families. Ficus was the most important taxa in the howlers' diet, followed by primary species such as Pterocarpus rohrii, Nectandra ambigens, Poulsenia armata, and Brosimum alicastrum. Secondary and non-secondary light-demanding plant species, which are representatives of disturbed habitat, contributed with a high percentage of their feeding time. Only 23% of the species consumed were the same across all the studies, suggesting that howlers adapt their diet to the food availability of their respective habitats. Population density is the best predictor of howlers' ecological and behavioral changes in response to forest fragmentation, probably owing to its relationship with food availability. Howlers respond to the increase in population densities by increasing the (1) diversity of food species in the diet; (2) consumption of non-tree growth forms; and (3) consumption of new plant items. Home range size is also predicted by population density, but fragment size is a better predictor, probably owing to the fact that howler groups can overlap their home ranges. Our results emphasize the importance of conserving the larger fragments and increasing the size of small and medium-sized ones.  相似文献   

9.
Vietnam’s elephant population that has suffered severe declines during the past three decades is now believed to number 60–80 individuals in the wild. Cat Tien National Park is thought to be one of the key areas for the recovery of Vietnam’s elephants. We carried out a molecular genetic study of elephants in Cat Tien National Park and its adjoining areas with the objectives of estimating minimum population size, assessing genetic diversity, and obtaining insights into social organization. We obtained a minimum population size of 11 elephants based on a combination of unique nuclear microsatellite genotypes and mitochondrial haplotypes. While mitochondrial diversity based on a 600-base pair segment was high in this small sample of individuals, the six microsatellite loci examined showed low diversity and the signature of a recent population bottleneck. Along with nuclear genetic depauperation of Cat Tien’s elephants, we also report disruption of normal social organization, with different matrilines having coalesced into a single social group because of anthropogenic disturbance. The results emphasize the critical condition of this elephant population and the need for urgent conservation measures if this population is to be saved.  相似文献   

10.
In Flanders (northern Belgium), the common (butlocally rare) P. veris and its rarerelative Primula vulgaris, twoself-incompatible perennials, mainly occur infragmented habitats of the intensively usedagricultural landscape. We investigated geneticvariation and structure for respectively 30 and27 allozyme loci in 24 and 41 populations ofP. veris and P. vulgaris, inrelation to species (local) abundance and topopulation size and plant density, and comparedpopulations of linear landscape elements(verges) with non verge populations. Therare P. vulgaris was geneticallydepauperate compared to the commoner P.veris. Both species showed a geographicalstructure of genetic variation and isolation bydistance. The scattered populations of P.veris from the Westhoek region (polderhabitats) were of smaller size, geneticallydepauperate and showed higher interpopulationdivergence compared to the Voeren region, wherepopulations are densely distributed andhabitats less fragmented. Verge and non vergepopulations showed similar populations sizesand levels of genetic variation. For bothspecies, small populations showed a loss ofgenetic variation, but still maintained highlevels of observed heterozygosity.Within-population plant density negativelyaffected allelic richness in P. veris.Ours results indicate that common species canalso be negatively affected by habitatfragmentation (perhaps even more so than rarespecies) and that verge populations can have ahigh potential conservation value. Both vergeand non-verge populations should be included inconservation efforts.  相似文献   

11.
12.
13.
Habitat loss and fragmentation due to urbanization are the most pervasive threats to biodiversity in southern California. Loss of habitat and fragmentation can lower migration rates and genetic connectivity among remaining populations of native species, reducing genetic variability and increasing extinction risk. However, it may be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric fragmentation due to previous natural geological and climatic changes. To address these challenges, we examined the phylogenetic and population genetic structure of a flightless insect endemic to cismontane southern California, Stenopelmatus'mahogani' (Orthoptera: Stenopelmatidae). Analyses of mitochondrial DNA sequence data suggest that diversification across southern California began during the Pleistocene, with most haplotypes currently restricted to a single population. Patterns of genetic divergence correlate with contemporary urbanization, even after correcting for (geographical information system) GIS-based reconstructions of fragmentation during the Pleistocene. Theoretical simulations confirm that contemporary patterns of genetic structure could be produced by recent urban fragmentation using biologically reasonable assumptions about model parameters. Diversity within populations was positively correlated with current fragment size, but not prehistoric fragment size, suggesting that the effects of increased drift following anthropogenic fragmentation are already being seen. Loss of genetic connectivity and diversity can hinder a population's ability to adapt to ecological perturbations commonly associated with urbanization, such as habitat degradation, climatic changes and introduced species. Consequently, our results underscore the importance of preserving and restoring landscape connectivity for long-term persistence of low vagility native species.  相似文献   

14.
15.
16.
In small and fragmented populations, genetic diversity may be reduced owing to increased levels of drift and inbreeding. This reduced diversity is often associated with decreased fitness and a higher threat of extinction. However, it is difficult to determine when a population has low diversity except in a comparative context. We assessed genetic variability in the critically endangered Cross River gorilla (Gorilla gorilla diehli), a small and fragmented population, using 11 autosomal microsatellite loci. We show that levels of diversity in the Cross River population are not evenly distributed across the three genetically identified subpopulations, and that one centrally located subpopulation has higher levels of variability than the others. All measures of genetic variability in the Cross River population were comparable to those of the similarly small mountain gorilla (G. beringei beringei) populations (Bwindi and Virunga). However, for some measures both the Cross River and mountain gorilla populations show lower levels of diversity than a sample from a large, continuous western gorilla population (Mondika, G. gorilla gorilla). Finally, we tested for the genetic signature of a bottleneck in each of the four populations. Only Cross River showed strong evidence of a reduction in population size, suggesting that the reduction in size of this population was more recent or abrupt than in the two mountain gorilla populations. These results emphasize the need for maintaining connectivity in fragmented populations and highlight the importance of allowing small populations to expand.  相似文献   

17.
For wild primates, demography studies are increasingly recognized as necessary for assessing the viability of vulnerable populations experiencing rapid environmental change. In particular, anthropogenic changes such as habitat loss and fragmentation can cause ecological and behavioral changes in small, isolated populations, which may, over time, alter population density and demographic structure (age/sex classes and group composition) in fragment populations relative to continuous forest populations. We compared our study population of Endangered black howler monkeys (Alouatta pigra) in 34 forest fragments around Palenque National Park (PNP), Mexico (62 groups, 407 individuals), to the adjacent population in PNP, protected primary forest (21 groups, 134 individuals), and to previous research on black howlers in fragments in our study area (18 groups, 115 individuals). We used χ2 and Mann–Whitney U tests to address the questions: (a) what is the current black howler demographic population structure in unprotected forest fragments around PNP? (b) How does it compare to PNP's stable, continuous population? (c) How has it changed over time? Compared to the PNP population, the fragment populations showed higher density, a significantly lower proportion of multimale groups, and significantly fewer adult males per group. The population's age/sex structure in the fragmented landscape has been stable over the last 17 years, but differed in a higher proportion of multifemale groups, higher density, and higher patch occupancy in the present. In the context of conservation, some of our results may be positive as they indicate possible population growth over time. However, long-term scarcity of adult males in fragments and associated effects on population demographic structure might be cause for concern, in that it may affect gene flow and genetic diversity. The scarcity of adult males might stem from males experiencing increased mortality while dispersing in the fragmented landscape, whereas females might be becoming more philopatric in fragments.  相似文献   

18.
Long‐term observational studies conducted at large (regional) spatial scales contribute to better understanding of landscape effects on population and evolutionary dynamics, including the conditions that affect long‐term viability of species, but large‐scale studies are expensive and logistically challenging to keep running for a long time. Here, we describe the long‐term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia) that has been conducted since 1991 in a large network of 4000 habitat patches (dry meadows) within a study area of 50 by 70 km in the Åland Islands in Finland. We explain how the landscape structure has been described, including definition, delimitation, and mapping of the habitat patches; methods of field survey, including the logistics, cost, and reliability of the survey; and data management using the EarthCape biodiversity platform. We describe the long‐term metapopulation dynamics of the Glanville fritillary based on the survey. There has been no long‐term change in the overall size of the metapopulation, but the level of spatial synchrony and hence the amplitude of fluctuations in year‐to‐year metapopulation dynamics have increased over the years, possibly due to increasing frequency of exceptional weather conditions. We discuss the added value of large‐scale and long‐term population studies, but also emphasize the need to integrate more targeted experimental studies in the context of long‐term observational studies. For instance, in the case of the Glanville fritillary project, the long‐term study has produced an opportunity to sample individuals for experiments from local populations with a known demographic history. These studies have demonstrated striking differences in dispersal rate and other life‐history traits of individuals from newly established local populations (the offspring of colonizers) versus individuals from old, established local populations. The long‐term observational study has stimulated the development of metapopulation models and provided an opportunity to test model predictions. This combination of empirical studies and modeling has facilitated the study of key phenomena in spatial dynamics, such as extinction threshold and extinction debt.  相似文献   

19.
Over 15 field seasons (1987-2001), we collected census and life-history data on a population of individually identified ring-tailed lemurs at the Beza Mahafaly Reserve, Madagascar. No significant difference was found in population size over the study period, though a marked decline in the population occurred following a 2-year drought. The population rebounded rapidly after the immediate postdrought period. There was nearly a complete replacement of individuals over the study period. Average group size is 11.5 animals, and adult male to female sex ratio is 0.92. Most females reproduce annually, and the average fecundity rate is 84.3%. The greatest variability in fecundity is found among old females. We suggest that ring-tailed lemur females follow an "income breeding" strategy, i.e., females use maximum resources during reproduction rather than relying on fat stores, as do "capital breeders." Infant mortality to 1 year of age in a nondrought year is 52%, higher than infant mortality in small to medium-sized anthropoids. The oldest known female was 18 years old in 2001. We suggest that 18-20 years may represent the maximum life-span for wild ring-tailed lemurs. Because males regularly emigrate from the population, we have no data regarding male life-span; however, there is some indication that males do not survive as long as females. Group fission has occurred three times: twice from one parent group living in the driest area of the reserve, with the most dispersed food resources. We suggest that the reproductive strategy that has evolved in this species, wherein females reproduce early in life and annually until old age, is a response to the unusual climate and environmental conditions under which Lemur catta has evolved.  相似文献   

20.
Intensification of rangeland management has coincided with population declines among obligate grassland species in the largest remaining tallgrass prairie in North America, although causes of declines remain unknown. We modeled population dynamics and conducted sensitivity analyses from demographic data collected for an obligate grassland bird that is an indicator species for tallgrass prairie, the greater prairie-chicken (Tympanuchus cupido), during a 4-year study in east-central Kansas, USA. We examined components of reproductive effort and success, juvenile survival, and annual adult female survival for 3 populations of prairie-chickens across an ecological gradient of human landscape alteration and land use. We observed regional differences in reproductive performance, survivorship, and population dynamics. All 3 populations of prairie-chickens were projected to decline steeply given observed vital rates, but rates of decline differed across a gradient of landscape alteration, with the greatest declines in fragmented landscapes. Elasticity values, variance-scaled sensitivities, and contribution values from a random-effects life-table response experiment all showed that the finite rate of population change was more sensitive to changes in adult survival than other demographic parameters in our declining populations. The rate of population change was also sensitive to nest survival at the most fragmented and least intensively grazed study site; suggesting that patterns of landscape fragmentation and land use may be affecting the relative influences of underlying vital rates on rates of population growth. Our model results indicate that 1) populations of prairie-chickens in eastern Kansas are unlikely to be viable without gains from immigration, 2) rates of population decline vary among areas under different land management practices, 3) human land-use patterns may affect the relative influences of vital rates on population trajectories, and 4) anthropogenic effects on population demography may influence the regional life-history strategies of a short-lived game bird. © 2012 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号