共查询到20条相似文献,搜索用时 0 毫秒
1.
Katharina V. Meyer Ina G. Siller Jana Schellenberg Alina Gonzalez Salcedo Drte Solle Jens Matuszczyk Thomas Scheper Janina Bahnemann 《Engineering in Life Science》2021,21(5):288
Due to the increasing economic and social relevance of biotherapeutics, their production processes are continually being reconsidered and reoptimized in an effort to secure higher product concentrations and qualities. Monitoring the productivity of cultured cells is therefore a critically important part of the cultivation process. Traditionally, this is achieved by determining the overall product titer by high performance liquid chromatography (HPLC), and then calculating the specific cell productivity based on this titer and an associated viable cell density. Unfortunately, this process is typically time‐consuming and laborious. In this study, the productivity of Chinese Hamster Ovary (CHO) cells expressing a monoclonal antibody was analyzed over the course of the cultivation process. In addition to calculating the specific cell productivity based on the traditional product titer determined by HPLC analysis, culture productivity of single cells was also analyzed via flow cytometry using a cold capture assay. The cold capture assay is a cell surface labelling technique described by Brezinsky et al., which allows for the visualization of a product on the surface of the producing cell. The cell productivity results obtained via HPLC and the results of cold capture assay remained in great accordance over the whole cultivation process. Accordingly, our study demonstrates that the cold capture assay offers an interesting, comparatively time‐effective, and potentially cheaper alternative for monitoring the productivity of a cell culture. 相似文献
2.
Gagnon M Hiller G Luan YT Kittredge A DeFelice J Drapeau D 《Biotechnology and bioengineering》2011,108(6):1328-1337
A simple method for control of lactate accumulation in suspension cultures of Chinese hamster ovary (CHO) cells based on the culture's pH was developed. When glucose levels in culture reach a low level (generally below 1 mM) cells begin to take up lactic acid from the culture medium resulting in a rise in pH. A nutrient feeding method has been optimized which delivers a concentrated glucose solution triggered by rising pH. We have shown that this high-end pH-controlled delivery of glucose can dramatically reduce or eliminate the accumulation of lactate during the growth phase of a fed-batch CHO cell culture at both bench scale and large scale (2,500 L). This method has proven applicable to the majority of CHO cell lines producing monoclonal antibodies and other therapeutic proteins. Using this technology to enhance a 12-day fed-batch process that already incorporated very high initial cell densities and highly concentrated medium and feeds resulted in an approximate doubling of the final titers for eight cell lines. The increase in titer was due to additional cell growth and higher cell specific productivity. 相似文献
3.
Fatemeh Naddafi Farshad H. Shirazi Yeganeh Talebkhan Maryam Tabarzad Farzaneh Barkhordari Zahra Aliabadi Farahani 《Preparative biochemistry & biotechnology》2013,43(10):961-967
AbstractThe “bispecifics” market improved over the past decade due to the development of many technological platforms including bispecific T cell engagers (BiTEs). The approval of blinatumomab, the most advanced bispecific T-cell engager (BiTE) in clinical trials, can be a significant milestone in the development of bispecific antibodies. Both Chinese hamster ovary (CHO) cells and E. coli strain are considered as the most widely used hosts for the large-scale production of therapeutic monoclonal antibodies. Since both of the economic and qualitative aspects of protein production are important in industry, selection of a suitable protein expression system is very critical. The BsAb gene was cloned into the expression vectors FC550A-1, pcDNA3.1 (+), and PET22b and 6?×?His-tagged BsAb then purified on a Ni-NTA chromatography column. Both SDS–PAGE and Western blotting analysis of the purified protein demonstrated that blinatumomab was successfully expressed as a 55?kDa in both expression systems. The antigen-binding properties of blinatumomab were compared in the mammalian system versus Escherichia coli. The results showed that the purified antibody from a mammalian expression system has better binding activity than the one from E. coli host. 相似文献
4.
de la Cruz Edmonds MC Tellers M Chan C Salmon P Robinson DK Markusen J 《Molecular biotechnology》2006,34(2):179-190
To date, the FDA has approved 18 monoclonal antibody (MAb) therapeutic drugs with targets ranging from asthma and rheumatoid
arthritis to leukemia. Many of these approved products are produced in Chinese hamster ovary cells (CHO) making CHO a significant
and relevant host system. We studied the applicability of CHOK1SV cells as a potential host cell line for MAb production in
terms of timelines, achievable titers, transfectant stability, and reproducibility. CHOK1SV, developed by Lonza Biologics,
is a suspension, protein-free-adapted CHOK1-derivative utilizing the glutamine synthetase (GS) gene expression system. CHOK1SV
expresses the GS enzyme endogenously; thus, positive transfectants were obtained under the dual selection of methionine sulfoximine
(MSX) and glutamine-free media. We examined outgrowth efficiencies, specific productivities, and achievable batch titers of
three different IgG MAbs transfected into CHOK1SV. Reducing the MSX concentration in the initial selection medium resulted
in a decreased incubation time required for transfectant colonies to appear. Specific productivities of “high-producers” ranged
between 11 and 49 pg/c/d with batch titers ranging from 105 to 519 mg/L. Transfectant stability and the effects of MSX also
were investigated, which indicated that the addition of MSX was necessary to maintain stable MAb production. Cell growth was
stable regardless of MSX concentration. 相似文献
5.
Jianxin Ye Vanessa Kober Melanie Tellers Zubia Naji Peter Salmon Julia F. Markusen 《Biotechnology and bioengineering》2009,103(3):542-551
Chinese hamster ovary cells (CHO) have been extensively utilized as the production platform for therapeutic proteins including monoclonal antibodies in pharmaceutical industry. For early development, it would be advantageous to rapidly produce large amounts of protein in the same cell line; therefore, development of a CHO transient transfection platform with high protein expression level is highly desirable. Here, we describe the development of such a platform in CHO cells. Polyethylenimine (PEI) was used as the transfection reagent. Different media were screened for the best transfection and expression performance, and UltraCHO was chosen as the best performer. DMSO and lithium acetate (LiAc) were discovered to improve CHO transient transfection expression levels significantly. A 14‐day fed‐batch process was successfully developed to further increase production yield. With an optimized transient transfection process, we were able to express monoclonal antibody (Mab) in CHO cells at a high level, averaging 80 mg/L. The process was successfully scaled up to 10 L working volume in a 20 L wave bioreactor. As expected, the Mabs had similar glycosylation patterns in comparison to the Mabs produced from a stably transfected CHO cell line, while in contrast Mabs expressed transiently from HEK293EBNA cells differed. Biotechnol. Bioeng. 2009;103: 542–551. © 2009 Wiley Periodicals, Inc. 相似文献
6.
Mouse-human hybridoma X87X cells were cultivated using a novel perfusion culture apparatus provided with three-settling zones to separate the cells from the culture medium by gravitational settling. The maximum viable cell density in a serum-free culture medium attained 3.0×107 cells/ml, when the specific perfusion rate was set to 2.3 vol day-1, and monoclonal antibody was continuously produced. These results were almost the same as those in the perfusion culture vessel with one settling zone and revealed that the process with a plurality of settling zones is a promising one for scale-up of a gravitation type of perfusion culture vessel. 相似文献
7.
《MABS-AUSTIN》2013,5(7):1254-1265
ABSTRACTMultiple strategies have been developed to facilitate the efficient production of bispecific IgG (BsIgG) in single host cells. For example, we previously demonstrated near quantitative (≥90%) formation of BsIgG of different species and isotypes by combining ‘knob-into-hole’ mutations for heavy chain heterodimerization with engineered antigen-binding fragments (Fabs) for preferential cognate heavy/light chain pairing. Surprisingly, in this study we found high yield (>65%) of BsIgG1 without Fab engineering to be a common occurrence, i.e., observed for 33 of the 99 different antibody pairs evaluated. Installing charge mutations at both CH1/CL interfaces was sufficient for near quantitative yield (>90%) of BsIgG1 for most (9 of 11) antibody pairs tested with this inherent cognate chain pairing preference. Mechanistically, we demonstrate that a strong cognate pairing preference in one Fab arm can be sufficient for high BsIgG1 yield. These observed chain pairing preferences are apparently driven by variable domain sequences and can result from a few specific residues in the complementarity-determining region (CDR) L3 and H3. Transfer of these CDR residues into other antibodies increased BsIgG1 yield in most cases. Mutational analysis revealed that the disulfide bond between heavy and light chains did not affect the yield of BsIgG1. This study provides some mechanistic understanding of factors contributing to antibody heavy/light chain pairing preference and subsequently contributes to the efficient production of BsIgG in single host cells. 相似文献
8.
William R. Tolbert Joseph Peder Richard C. Kimes 《In vitro cellular & developmental biology. Plant》1981,17(10):885-890
Summary A system has been developed for growth and maintenance of mammalian cells in suspension culture at high density. In principle, the maintenance of constant levels of required nutrients coupled with the removal of toxic cell byproducts can support much higher suspension cell densities than may be obtained in conventional spinners. The system consisted of 4- or 40-liter reaction vessels equipped with a vertically supported rotating cylindrical filter. Agitation was provided by the magnetically driven, rotating filter. Fresh medium was supplied at a rate of 10 to 20 ml/h per 109 cells and the expended medium free of cells was withdrawn through the rotating filter. Both pH and dissolved O2 and CO2 were monitored and regulated. Walker 256 carcinosarcoma cells have been grown in these reactors to densities 10-to 30-fold greater than that obtained in Bellco spinners. In addition to high cell densities, the yield of cells per liter of medium used was 2- to 3-fold that obtained in the conventional systems. Both 4-and 40-liter versions of this reactor have been operated without the use of antibiotics. The 40-liter reactor also has been modified for chemostat operation. In a single run, for example, the Walker cell density was maintained between 6 and 10×106 cells/ml with a total yield of 8.7×1011 cells from 360 liters of medium. 相似文献
9.
Jean-Marc Bielser Leon Kraus Orlando Burgos-Morales Hervé Broly Jonathan Souquet 《Biotechnology progress》2020,36(5):e3026
Media preparation for perfusion cell culture processes contributes significantly to operational costs and the footprint of continuous operations for therapeutic protein manufacturing. In this study, definitions are given for the use of a perfusion equivalent nutrient feed stream which, when used in combination with basal perfusion medium, supplements the culture with targeted compounds and increases the medium depth. Definitions to compare medium and feed depth are given in this article. Using a concentrated nutrient feed, a 1.8-fold medium consumption (MC) decrease and a 1.67-fold increase in volumetric productivity (PR) were achieved compared to the initial condition. Later, this strategy was used to push cell densities above 100 × 106 cells/ml while using a perfusion rate below 2 RV/day. In this example, MC was also decreased 1.8-fold compared to the initial condition, but due to the higher cell density, PR was increased 3.1-fold and to an average PR value of 1.36 g L−1 day−1 during a short stable phase, and versus 0.46 g L−1 day−1 in the initial condition. Overall, the performance improvements were aligned with the given definitions. This multiple feeding strategy can be applied to gain some flexibility during process development and also in a manufacturing set-up to enable better control on nutrient addition. 相似文献
10.
11.
Emma J. Mead Lesley M. Chiverton C. Mark Smales Tobias von der Haar 《Biotechnology and bioengineering》2009,102(6):1593-1602
12.
13.
Karin Taylor Christopher B Howard Martina L Jones Ilya Sedliarou Jennifer MacDiarmid Himanshu Brahmbhatt Trent P Munro Stephen M Mahler 《MABS-AUSTIN》2015,7(1):53-65
There are many design formats for bispecific antibodies (BsAbs), and the best design choice is highly dependent on the final application. Our aim was to engineer BsAbs to target a novel nanocell (EnGeneIC Delivery Vehicle or EDVTMnanocell) to the epidermal growth factor receptor (EGFR). EDVTMnanocells are coated with lipopolysaccharide (LPS), and BsAb designs incorporated single chain Fv (scFv) fragments derived from an anti-LPS antibody (1H10) and an anti-EGFR antibody, ABX-EGF. We engineered various BsAb formats with monovalent or bivalent binding arms and linked scFv fragments via either glycine-serine (G4S) or Fc-linkers. Binding analyses utilizing ELISA, surface plasmon resonance, bio-layer interferometry, flow cytometry and fluorescence microscopy showed that binding to LPS and to either soluble recombinant EGFR or MDA-MB-468 cells expressing EGFR, was conserved for all construct designs. However, the Fc-linked BsAbs led to nanocell clumping upon binding to EDVTMnanocells. Clumping was eliminated when additional disulfide bonds were incorporated into the scFv components of the BsAbs, but this resulted in lower BsAb expression. The G4S-linked tandem scFv BsAb format was the optimal design with respect to EDV binding and expression yield. Doxorubicin-loaded EDVTMnanocells actively targeted with tandem scFv BsAb in vivo to MDA-MB-468-derived tumors in mouse xenograft models enhanced tumor regression by 40% compared to passively targeted EDVTMnanocells. BsAbs therefore provide a functional means to deliver EDVTMnanocells to target cells. 相似文献
14.
Shahid Rameez Yogender K. Gowtham Gautam Nayar Sigma S. Mostafa 《Biotechnology progress》2021,37(5):e3176
The regulatory approval of a biosimilar product is contingent on the favorable comparability of its safety and efficacy to that of the innovator product. As such, it is important to match the critical quality attributes of the biosimilar product to that of the innovator product. The N-glycosylation profile of a monoclonal antibody (mAb) can influence effector function activities such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity. In this study, we describe efforts to modulate the high-mannose (HM) levels of a biosimilar mAb produced in a Chinese hamster ovary cell fed-batch process. Because the HM level of the mAb was observed to impact ADCC activity, it was desirable to match it to the innovator mAb's levels. Several cell culture process related factors known to modulate the HM content of N-glycosylation were investigated, including osmolality, ammonium chloride (NH4Cl) addition, glutamine concentration, monensin addition, and the addition of alternate sugars and amino sugars to the feed medium. The process conditions evaluated varied in impact on HM levels, process performance and product quality. One condition, the addition of alternate sugars and amino sugars to feed medium, was identified as the preferred method for increasing HM levels with minimal disruptions to process performance or other product quality attributes. Interestingly, a secondary interaction between sugar and amino sugar supplemented feeds and osmolality was observed during process scale-up. These studies demonstrate sugar and amino sugar concentrations and osmolality are critical variables to evaluate to match HM content in biosimilar and their innovator mAbs. 相似文献
15.
《MABS-AUSTIN》2013,5(1):53-65
There are many design formats for bispecific antibodies (BsAbs), and the best design choice is highly dependent on the final application. Our aim was to engineer BsAbs to target a novel nanocell (EnGeneIC Delivery Vehicle or EDVTMnanocell) to the epidermal growth factor receptor (EGFR). EDVTMnanocells are coated with lipopolysaccharide (LPS), and BsAb designs incorporated single chain Fv (scFv) fragments derived from an anti-LPS antibody (1H10) and an anti-EGFR antibody, ABX-EGF. We engineered various BsAb formats with monovalent or bivalent binding arms and linked scFv fragments via either glycine-serine (G4S) or Fc-linkers. Binding analyses utilizing ELISA, surface plasmon resonance, bio-layer interferometry, flow cytometry and fluorescence microscopy showed that binding to LPS and to either soluble recombinant EGFR or MDA-MB-468 cells expressing EGFR, was conserved for all construct designs. However, the Fc-linked BsAbs led to nanocell clumping upon binding to EDVTMnanocells. Clumping was eliminated when additional disulfide bonds were incorporated into the scFv components of the BsAbs, but this resulted in lower BsAb expression. The G4S-linked tandem scFv BsAb format was the optimal design with respect to EDV binding and expression yield. Doxorubicin-loaded EDVTMnanocells actively targeted with tandem scFv BsAb in vivo to MDA-MB-468-derived tumors in mouse xenograft models enhanced tumor regression by 40% compared to passively targeted EDVTMnanocells. BsAbs therefore provide a functional means to deliver EDVTMnanocells to target cells. 相似文献
16.
Kinetics of recombinant immunoglobulin production by mammalian cells in continuous culture 总被引:1,自引:0,他引:1
A clonal derivative of a transfectant of the SP2/O myeloma cell line producing a chimeric monoclonal antibody was maintained in steady-state, continuous culture at dilution rates ranging from 0.21 to 1.04 day(-1). The steady-state values for nonviable and total cell concentrations increased as the dilution rate decreased, while the viable cell concentration was roughly independent of the dilution rate. At steady state, the specific growth rate increased and the specific death rate decreased as the dilution rate increased. The maximum specific growth rate was 1.15 day(-1). Antibody production was growth associated and the specific rate of antibody production increased linearly as the specific growth rate increased. 相似文献
17.
Michael Dillon Yiyuan Yin Jianhui Zhou Luke McCarty Diego Ellerman Dionysos Slaga 《MABS-AUSTIN》2017,9(2):213-230
Bispecific IgG production in single host cells has been a much sought-after goal to support the clinical development of these complex molecules. Current routes to single cell production of bispecific IgG include engineering heavy chains for heterodimerization and redesign of Fab arms for selective pairing of cognate heavy and light chains. Here, we describe novel designs to facilitate selective Fab arm assembly in conjunction with previously described knobs-into-holes mutations for preferential heavy chain heterodimerization. The top Fab designs for selective pairing, namely variants v10 and v11, support near quantitative assembly of bispecific IgG in single cells for multiple different antibody pairs as judged by high-resolution mass spectrometry. Single-cell and in vitro-assembled bispecific IgG have comparable physical, in vitro biological and in vivo pharmacokinetics properties. Efficient single-cell production of bispecific IgG was demonstrated for human IgG1, IgG2 and IgG4 thereby allowing the heavy chain isotype to be tailored for specific therapeutic applications. Additionally, a reverse chimeric bispecific IgG2a with humanized variable domains and mouse constant domains was generated for preclinical proof-of-concept studies in mice. Efficient production of a bispecific IgG in stably transfected mammalian (CHO) cells was shown. Individual clones with stable titer and bispecific IgG composition for >120 days were readily identified. Such long-term cell line stability is needed for commercial manufacture of bispecific IgG. The single-cell bispecific IgG designs developed here may be broadly applicable to biotechnology research, including screening bispecific IgG panels, and to support clinical development. 相似文献
18.
Philippe-Alexandre Gilbert Alain Garnier Danielle Jacob Amine Kamen 《Biotechnology letters》2000,22(7):561-567
An on-line fluorescence sensor prototype was constructed to monitor the production of the green fluorescent protein (GFP) by 293S cells infected with a recombinant adenovirus vector (rAdV) containing the GFP gene. Fluorescence was correlated to GFP concentration and therefore to viral protein expression, but not to rAdV production. The sensor signal can also be used to compute the GFP production rate, which predicts well the occurrence of maximum viral titer. 相似文献
19.
Meshram M Naderi S McConkey B Budman H Scharer J Ingalls B 《Biotechnology and bioengineering》2012,109(5):1193-1204
The production of biopharmaceuticals from mammalian cell culture is hindered by apoptosis, which is the primary cause of cell death in these cultures. As a tool for optimization of culture yield, this study presents a population-based model describing the progression of apoptosis in a monoclonal antibody (mAb)-producing Chinese hamster ovary (CHO) cell culture. Because mAb production does not cease when apoptosis begins, the model was designed to incorporate subpopulations at various stages in the progression of apoptosis. The model was validated against intracellular measurements of caspase activity as well as cell density, nutrient levels, and toxic metabolites. Since the specific details of apoptotic mechanisms have not been elucidated in this cell line, we employed a model comparison analysis that suggests the most plausible pathways of activation. 相似文献