共查询到20条相似文献,搜索用时 0 毫秒
1.
Nathan G. Swenson Pedro Anglada-Cordero John A. Barone 《Proceedings. Biological sciences / The Royal Society》2011,278(1707):877-884
Explaining the mechanisms that produce the enormous diversity within and between tropical tree communities is a pressing challenge for plant community ecologists. Mechanistic hypotheses range from niche-based deterministic to dispersal-based stochastic models. Strong tests of these hypotheses require detailed information regarding the functional strategies of species. A few tropical studies to date have examined trait dispersion within individual forest plots using species trait means in order to ask whether coexisting species tend to be more or less functionally similar than expected given a null model. The present work takes an alternative approach by: (i) explicitly incorporating population-level trait variability; and (ii) quantifying the functional beta diversity in a series of 15 tropical forest plots arrayed along an elevational gradient. The results show a strong pattern of decay in community functional similarity with elevation. These observed patterns of functional beta diversity are shown to be highly non-random and support a deterministic model of tropical tree community assembly and turnover. 相似文献
2.
Jesse R. Lasky María Uriarte Vanessa K. Boukili David L. Erickson W. John Kress Robin L. Chazdon 《Ecology letters》2014,17(9):1158-1167
Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8–16 years in eight successional rainforests. We tested whether successional changes in diversity–Δbiomass correlations reflect predictions of niche theories. Diversity–Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid‐successional stands, high biodiversity was associated with greater mortality‐driven biomass loss, i.e. negative selection effects, suggesting successional niche trade‐offs and loss of fast‐growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system. 相似文献
3.
TIMOTHY J. CURRAN ROBYN L. BROWN EMILEE EDWARDS KRISTINA HOPKINS CATHERINE KELLEY ELIZABETH MCCARTHY ERIN POUNDS RENATA SOLAN JAMI WOLF 《Austral ecology》2008,33(4):451-461
Abstract Cyclones cause profound immediate impacts on tropical rainforest trees, including defoliation, limb loss, snapping of stems and uprooting. Some studies have shown that plant functional traits such as tree size, buttress roots and wood density are correlated with these forms of cyclone damage. On 20 March 2006, Severe Tropical Cyclone Larry crossed the north Queensland coast and proceeded inland across the Atherton Tablelands, impacting the critically endangered Mabi Type 5b rainforest. We investigated the effects of Cyclone Larry on common tree species by categorizing damage to trees as uprooted, snapped, limbs damaged (light, moderate, severe) or upright and estimating levels of defoliation. Damage was then related to functional traits including tree size, presence of buttress roots, wood density, and leaf size and strength. Levels of damage differed between species. Tree size (diameter at breast height) and the presence of buttress roots were not related to damage levels. Wood density was significantly negatively correlated to proportion of trees with snapped stems and significantly positively correlated with the proportion of trees upright with no or light limb damage. Levels of defoliation were significantly related to leaf strength (specific leaf area – SLA) and to leaf width, but not other components of leaf size (area or length) or petiole length. Species with high wood density and low SLA (e.g. Argyrodendron spp.) were found to have high cyclone resistance, the ability to resist damage, while species with low wood density and high SLA (e.g. Dendrocnide photinophylla) exhibited low resistance. However, traits related to low resistance are also those linked to rapid growth and high cyclone resilience, the ability to recover from damage, so it is unlikely that the Mabi forest will experience long‐term changes in floristic composition following Cyclone Larry. 相似文献
4.
5.
6.
7.
Grégoire T. Freschet Peter J. Bellingham Philip O'B. Lyver Karen I. Bonner David A. Wardle 《Ecology and evolution》2013,3(4):1065-1078
Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured population‐level analogous above‐ and belowground traits related to resource acquisition, i.e. “specific leaf area”–“specific root length” (SLA–SRL), and leaf and root N, P, and dry matter content (DMC), on three dominant understory tree species with contrasting carbon and nutrient economics across 15 plots in a temperate forest influenced by burrowing seabirds. We observed similar responses of the three species to the same single environmental influences, but partially species‐specific responses to combinations of influences. The strength of intraspecific above‐ and belowground trait responses appeared unrelated to species resource acquisition strategy. Finally, most analogous leaf and root traits (SLA vs. SRL, and leaf versus root P and DMC) were controlled by contrasting environmental influences. The decoupled responses of above‐ and belowground traits to these multiple environmental factors together with partially species‐specific adjustments suggest complex responses of plant communities to environmental changes, and potentially contrasting feedbacks of plant traits with ecosystem properties. We demonstrate that despite the growing evidence for broadly consistent resource‐acquisition strategies at the whole plant level among species, plants also show partially decoupled, finely tuned strategies between above‐ and belowground parts at the intraspecific level in response to their environment. This decoupling within species suggests a need for many species‐centred ecological theories on how plants respond to their environments (e.g. competitive/stress‐tolerant/ruderal and response‐effect trait frameworks) to be adapted to account for distinct plant‐environment interactions among distinct individuals of the same species and parts of the same individual. 相似文献
8.
Ian J. Wright Julia Cooke Lucas A. Cernusak Lindsay B. Hutley Marina C. Scalon Wade C. Tozer Caroline E. R. Lehmann 《Austral ecology》2019,44(2):339-350
Plant growth rates strongly determine ecosystem productivity and are a central element of plant ecological strategies. For laboratory and glasshouse‐grown seedlings, specific leaf area (SLA; ratio of leaf area to mass) is a key driver of interspecific variation in growth rate (GR). Consequently, SLA is often assumed to drive GR variation in field‐grown adult plants. However, there is an increasing evidence that this is not the general case. This suggests that GR – SLA relationships (and perhaps those for other traits) may vary depending on the age or size of the plants being studied. Here we investigated GR – trait relationships and their size dependence among 17 woody species from an open‐canopy, fire‐prone savanna in northern Australia. We tested the predictions that SLA and stem diameter growth rate would be positively correlated in saplings but unrelated in adults while, in both age classes, faster‐GR species would have higher light‐saturated photosynthetic rate (Asat), higher leaf nutrient concentrations, higher branch‐scale biomass allocation to leaf versus stem tissues and lower wood density (WD). SLA showed no relationship to stem diameter GR, even in saplings, and the same was true of leaf N and P concentrations, and WD. However, branch‐scale leaf:stem allocation was strongly related to GR in both age groups, as was Asat. Together, these two traits accounted for up to 80% of interspecific variation in adult GR, and 41% of sapling GR. Asat is rarely measured in field‐based GR studies, and this is the first report of branch‐scale leaf:stem allocation (analogous to a benefit:cost ratio) in relation to plant growth rate. Our results suggest that we may yet find general trait‐drivers of field growth rates, but SLA will not be one. 相似文献
9.
植物功能性状对全球气候变化的指示作用研究进展 总被引:1,自引:0,他引:1
以大气CO2浓度升高、大气温度升高、干旱胁迫加剧及紫外辐射增强为特征的全球变化对陆地生态系统产生巨大影响,植物作为陆地生态系统的重要组成部分,其功能性状对全球变化的指示作用为探寻全球变化规律、减缓气候变化提供了科学依据。该文主要综述了植物生理功能性状改变(形态变化、气孔调节、光合结构及光合途径改变和植物光合、呼吸速率及水分生理变化等)和物候功能性状改变对全球变化的指示作用,以及植物群落物种丰富度或数量增加等群落特征变化对全球气候变暖的指示作用。最后指出,完善植物功能性状指标和建立从植物个体、群落到生态系统功能的网络指示系统是今后植物功能性状指示研究的发展方向。 相似文献
10.
Ning Dong Benjamin Dechant Han Wang Ian J. Wright Iain Colin Prentice 《Global Ecology and Biogeography》2023,32(7):1152-1162
Aim
Leaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine-learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco-evolutionary optimality theory, to yield predictions of spatio-temporal patterns in leaf traits that can be independently evaluated.Innovation
Global patterns of community-mean specific leaf area (SLA) and photosynthetic capacity (Vcmax) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area (Narea) and mass (Nmass) are inferred using their (previously derived) empirical relationships to SLA and Vcmax. Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf-level measurements and/or remote-sensing methods, which are an increasingly important source of information on spatio-temporal variation in plant traits.Main conclusions
Model predictions evaluated against site-mean trait data from > 2,000 sites in the Plant Trait database yielded R2 = 73% for SLA, 38% for Nmass and 28% for Narea. Declining species-level Nmass, and increasing community-level SLA, have both been recently reported and were both correctly predicted. Leaf-trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf-trait responses to environmental change. 相似文献11.
张永强;李明喜;曾文汐;王飞;余海清;张超;邵慧敏;马文宝;董廷发 《生态学杂志》2025,44(3):713-719
叶片功能性状被广泛用于表征植物对环境变化的响应与适应。杜鹃花作为重要的园艺和具有生态价值物种;对热的敏感性限制了其在低海拔地区的生存;然而基于功能性状分析杜鹃花如何响应暖化气候诱发的热效应的研究还较少。本研究以四川都江堰地区的6种杜鹃花属幼树为对象;采用低海拔移植的手段;比较了叶片形态(单叶重(LM)、单叶面积(LA)、叶厚(LT)、比叶面积(SLA))、叶干物质含量(LDMC)、养分(叶氮(N)、磷(P)、氮磷比(N/P))和净光合速率(Pn)性状在两个海拔之间的差异。结果表明:(1)高海拔(1800 m)下6种杜鹃花的叶片形态(除比叶面积)、养分(除叶磷)、Pn在物种之间有差异显著;但在低海拔移植(550 m)后;杜鹃花的叶干物质含量和Pn在种间无显著差异。(2)总体上;低海拔移植显著增加了比叶面积、Pn、叶氮和磷含量;减少了单叶重、单叶面积、叶厚和叶干物质含量;且这些性状的响应强度在不同物种间不同。(3)从性状之间的关系来看;高海拔生境下Pn与比叶面积、叶氮含量和氮磷比均呈显著正相关;而低海拔移植后这些关系均不显著。这些结果暗示不同杜鹃花物种对温度升高的敏感性不一致。本研究结果可为理解杜鹃花属植物响应与适应全球气候变暖提供科学依据。 相似文献
12.
Robert J. Griffin-Nolan;Brody Sandel; 《Ecography》2023,2023(8):e06586
Plant traits are useful for predicting how species may respond to environmental change and/or influence ecosystem properties. Understanding the extent to which traits vary within species and across climatic gradients is particularly important for understanding how species may respond to climate change. We explored whether climate drives spatial patterns of intraspecific trait variation for three traits (specific leaf area (SLA), plant height, and leaf nitrogen content (Nmass)) across 122 grass species (family: Poaceae) with a combined distribution across six continents. We tested the hypothesis that the sensitivity (i.e. slope) of intraspecific trait responses to climate across space would be related to the species' typical form and function (e.g. leaf economics, stature and lifespan). We observed both positive and negative intraspecific trait responses to climate with the distribution of slope coefficients across species straddling zero for precipitation, temperature and climate seasonality. As hypothesized, variation in slope coefficients across species was partially explained by leaf economics and lifespan. For example, acquisitive species with nitrogen-rich leaves grew taller and produced leaves with higher SLA in warmer regions compared to species with low Nmass. Compared to perennials, annual grasses invested in leaves with higher SLA yet decreased height and Nmass in regions with high precipitation seasonality (PS). Thus, while the influence of climate on trait expression may at first appear idiosyncratic, variation in trait–climate slope coefficients is at least partially explained by the species' typical form and function. Overall, our results suggest that a species' mean location along one axis of trait variation (e.g. leaf economics) could influence how traits along a separate axis of variation (e.g. plant size) respond to spatial variation in climate. 相似文献
13.
14.
Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny 总被引:2,自引:2,他引:2
It was predicted that relationships of leaf mass per area (LMA) with juvenile shade tolerance will depend on leaf habit, and on whether species are compared at a common age as young seedlings, or at a common size as saplings. A meta-analysis of 47 comparative studies (372 species) was used to test predictions, and the effect of light environment on this relationship. The LMA of evergreens was positively correlated with shade tolerance, irrespective of ontogeny or light environment. The LMA of young seedlings (相似文献
15.
BACKGROUND AND AIMS: Leaf dry matter content (LDMC) is widely used as an indicator of plant resource use in plant functional trait databases. Two main methods have been proposed to measure LDMC, which basically differ in the rehydration procedure to which leaves are subjected after harvesting. These are the 'complete rehydration' protocol of Garnier et al. (2001, Functional Ecology 15: 688-695) and the 'partial rehydration' protocol of Vendramini et al. (2002, New Phytologist 154: 147-157). METHODS: To test differences in LDMC due to the use of different methods, LDMC was measured on 51 native and cultivated species representing a wide range of plant families and growth forms from central-western Argentina, following the complete rehydration and partial rehydration protocols. KEY RESULTS AND CONCLUSIONS: The LDMC values obtained by both methods were strongly and positively correlated, clearly showing that LDMC is highly conserved between the two procedures. These trends were not altered by the exclusion of plants with non-laminar leaves. Although the complete rehydration method is the safest to measure LDMC, the partial rehydration procedure produces similar results and is faster. It therefore appears as an acceptable option for those situations in which the complete rehydration method cannot be applied. Two notes of caution are given for cases in which different datasets are compared or combined: (1) the discrepancy between the two rehydration protocols is greatest in the case of high-LDMC (succulent or tender) leaves; (2) the results suggest that, when comparing many studies across unrelated datasets, differences in the measurement protocol may be less important than differences among seasons, years and the quality of local habitats. 相似文献
16.
Linking individual response to biotic interactions with community structure: a trait-based framework
Nicolas Gross Georges Kunstler Pierre Liancourt Francesco de Bello Katharine Nash Suding Sandra Lavorel 《Functional ecology》2009,23(6):1167-1178
1. Due to species-specificity of the outcomes of biotic interactions, it is difficult to generalize from observed biotic interactions at the individual plant level to the effect of those interactions at the community level. To evaluate the importance of biotic interactions in shaping plant communities, it is necessary to understand how the outcomes of the complex interactions observed at the individual level can influence community structure.
2. Here, we propose a trait-based framework that identifies and organises mechanisms affecting community structure (here described with relative abundances of plant functional traits – i.e. the distribution of trait values at the community level). We applied our approach to a single leaf trait, specific leaf area (SLA), to link individual responses to plant interactions with community structure (SLA distribution observed at the community level) and to test whether biotic interactions can predict the functional composition of subalpine grasslands. We evaluated the generality of our model through a cross-validation with a set of eight subalpine grasslands independent from the four fields used to build the model.
3. We found that competition and facilitation were able to explain the functional composition of subalpine grasslands, and the relevant fitness components (survival or growth) explaining this link changed depending on the limiting resources. When soil water availability was limiting, positive plant-plant interactions acting on survival were able to explain community structure. In contrast, when no water limitation was observed competition acting on individual growth was the main driver of community structure.
4. Our framework enables evaluation of the consequences of biotic interactions observed at individual level on community structure, thereby indicating when and where different types of plant-plant interactions are important. 相似文献
2. Here, we propose a trait-based framework that identifies and organises mechanisms affecting community structure (here described with relative abundances of plant functional traits – i.e. the distribution of trait values at the community level). We applied our approach to a single leaf trait, specific leaf area (SLA), to link individual responses to plant interactions with community structure (SLA distribution observed at the community level) and to test whether biotic interactions can predict the functional composition of subalpine grasslands. We evaluated the generality of our model through a cross-validation with a set of eight subalpine grasslands independent from the four fields used to build the model.
3. We found that competition and facilitation were able to explain the functional composition of subalpine grasslands, and the relevant fitness components (survival or growth) explaining this link changed depending on the limiting resources. When soil water availability was limiting, positive plant-plant interactions acting on survival were able to explain community structure. In contrast, when no water limitation was observed competition acting on individual growth was the main driver of community structure.
4. Our framework enables evaluation of the consequences of biotic interactions observed at individual level on community structure, thereby indicating when and where different types of plant-plant interactions are important. 相似文献
17.
Natalia Prez‐Harguindeguy Sandra Díaz Fernanda Vendramini Johannes H. C. Cornelissen Diego E. Gurvich Marcelo Cabido 《Austral ecology》2003,28(6):642-650
Abstract Despite the vast diversity and complexity of herbivores, plants and their interactions, most authors agree that a small number of components of leaf quality affect preference by generalist herbivores in a predictable way. However, herbivore preference is determined not only by intrinsic plant attributes and herbivore biology but also by the environmental context. Within this framework, we aimed to analyse general interspecific trends in the association between herbivory and leaf traits over a wide range of angiosperms from central Argentina. We (i) tested for consistent associations between leaf traits, consumption in the field, and preference of generalist invertebrate herbivores in cafeteria experiments; (ii) assessed how well herbivore preferences in cafeterias matched leaf consumption in the field; and (iii) developed a simple conceptual model linking leaf traits, herbivore preference in cafeterias and consumption in the field. In general, we found that tender leaves with higher nutritional quality were preferred by herbivores, both in the field and in cafeteria experiments. According to our model, this relationship between field and cafeteria consumption and leaf quality is observed when generalist herbivores and plants of high accessibility are considered. However, differences between leaf consumption in the field and in cafeteria experiments can also be found. At least two reasons can account for this: (i) specialized plant–herbivore relationships often occur in the field, whereas cafeteria experiments tend to consider only one or a few generalist herbivores; (ii) different plant species growing in the field often differ in their degree of accessibility to herbivores, whereas in cafeteria experiments all species are equally accessible. Our results add new evidence to a growing consensus that, although herbivory in the field is determined by many factors, consistent patterns of differential susceptibility to foliar feeders can be found in leaves differing in nutritional quality and thus in resource‐use strategy. 相似文献
18.
Arildo S. Dias;Rafael S. Oliveira;Fernando R. Martins;Frans Bongers;Niels P. R. Anten;Frank J. Sterck; 《Global Ecology and Biogeography》2024,33(7):e13846
Lianas are a central component of tropical forests. However, how the type of climbing mechanisms is related to the functional and taxonomic diversity of lianas across the tropics, remains largely unresolved. Here, we tested two main hypotheses: (i) the functional diversity of lianas differs with climbing mechanism (active and passive) and (ii) the association between taxonomic diversity with contemporary climate, paleoclimate, forest structure and phylogeny differ between climbing mechanisms. 相似文献
19.
20.
植物的叶片与细根分别作为植物体地上和地下部分重要的营养器官, 很多功能性状在二者之间存在着一定的关联性。研究这种关联有助于理解植物各性状之间的相互作用、植物生长过程中对资源的利用和分配, 以及建立细根性状的估算模型。该研究对内蒙古锡林河流域65种植物叶片与细根的氮(N)含量、磷(P)含量、N:P以及比叶面积(SLA)和比根长(SRL)进行了比较研究, 结果表明: 在种间尺度上, 叶片与细根间的N、P和N:P存在显著的相关性, 而SLA与SRL之间相关性较弱; 在种内尺度上, 叶片和细根的N、P及SLA与SRL, 在不同的物种中呈现出不同的趋势。此外, 叶片与细根性状的关联, 在不同的植物功能群之间存在差异。例如, 双子叶植物叶片与细根间的N含量显著相关, P含量不相关; 而单子叶植物二者之间的P含量显著相关, N含量无关联。该研究的主要结论是, 在相对一致的生境中, 植物叶片与细根性状的关联主要发生在不同物种之间, 在种内尺度上这种关联不明显, 这可能与植物功能性状在种内存在较小的变异幅度有关。 相似文献