首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration.  相似文献   

2.
Diversified group of bacteria were screened for carbonic anhydrase (CA) activity. Significant CA activity was found in crude enzyme extracts of Enterobacter and Aeromonas isolates while minimal or negligible CA activity was observed in case of Shigella and Klebsiella spp. Optimization and characterization study of potent CA producing isolates revealed that the maximum enzyme activity of 3.86 EU/ml was observed in E. taylorae and the optimum pH range for enzyme stability was found to be 7.5–9.0 along with an optimum temperature range of 35–50 °C. The molecular mass of CA was 29-kDa indicating α-type with periplasmic and cytosolic location. Present investigation for the first time reports CA in diversified genus and optimized parameters for enhanced production of CA in Enterobacter sp. & Aeromonas sp. from fresh water bodies that inturn lay down grounds for exploitation of CA from E. taylorae as an efficient catalyst for CO2 sequestration within a bioreactor.  相似文献   

3.
Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2. A new concept for CO2 capture involves use of immobilized carbonic anhydrase (CA) that catalyzes the reversible hydration of CO2 to HCO3? and H+. Cost‐efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA‐based CO2 capture processes. An artificial, bifunctional enzyme containing CA from Neisseria gonorrhoeae and a cellulose binding domain (CBD) from Clostridium thermocellum was constructed with a His6 tag. The chimeric enzyme exhibited both CA activity and CBD binding affinity. This fusion enzyme is of particular interest due to its binding affinity for cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gasses. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
Harnessing enzyme expression for production of target chemicals is a critical and multifarious process, where screening of different genes by inspection of enzymatic activity plays an imperative role. Here, we conceived an idea to improve the time-consuming and labor-intensive process of enzyme screening. Controlling cell growth was achieved by the Cluster Regularly Interspaced Short Palindromic Repeat (CRISPRi) system with different single guide RNA targeting the essential gene can (CRISPRi::CA) that encodes a carbonic anhydrase for CO2 uptake. CRISPRi::CA comprises a whole-cell biosensor to monitor CO2 concentration, ranging from 1% to 5%. On the basis of CRISPRi::CA, an effective and simple Direct Enzymatic Performance Evaluation & Determination (DEPEND) system was developed by a single step of plasmid transformation for targeted enzymes. As a result, the activity of different carbonic anhydrases corresponded to the colony-forming units. Furthermore, the enzymatic performance of 5-aminolevulinic acid synthetase (ALAS), which converts glycine and succinate-CoA to release a molecule of CO2, has also been distinguished, and the effect of the chaperone GroELS on ALAS enzyme folding was successfully identified in the DEPEND system. We provide a highly feasible, time-saving, and flexible technology for the screening and inspection of high-performance enzymes, which may accelerate protein engineering in the future.  相似文献   

5.
The methanolysis of soybean oil to produce a fatty acid methyl ester (ME, i.e., biodiesel fuel) was catalyzed by lipase-producing filamentous fungi immobilized on biomass support particles (BSPs) as a whole-cell biocatalyst in the presence of ionic liquids. We used four types of whole-cell biocatalysts: wild-type Rhizopus oryzae producing triacylglycerol lipase (w-ROL), recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (r-FHL), Candida antarctica lipase B (r-CALB), and mono- and diacylglycerol lipase from A. oryzae (r-mdlB). w-ROL gave the high yield of fatty acid methyl ester (ME) in ionic liquid [Emim][BF4] or [Bmim][BF4] biphasic systems following a 24 h reaction. While lipases are known to be severely deactivated by an excess amount of methanol (e.g. 1.5 Mequiv. of methanol against oil) in a conventional system, methanolysis successfully proceeded even with a methanol/oil ratio of 4 in the ionic liquid biphasic system, where the ionic liquids would work as a reservoir of methanol to suppress the enzyme deactivation. When only w-ROL was used as a biocatalyst for methanolysis, unreacted mono-glyceride remained due to the 1,3-positional specificity of R. oryzae lipase. High ME conversion was attained by the combined use of two types of whole-cell biocatalysts, w-ROL and r-mdlB. In a stability test, the activity of w-ROL was reduced to one-third of its original value after incubation in [Bmim][BF4] for 72 h. The stability of w-ROL in [Bmim][BF4] was greatly enhanced by cross-linking the biocatalyst with glutaraldehyde. The present study demonstrated that ionic liquids are promising candidates for use as the second solvent in biodiesel fuel production by whole-cell biocatalysts.  相似文献   

6.

Earlier studies on fructose laurate ester products have shown that recombinant Pichia pastoris displaying Candida antarctica lipase B (CALB) on the cell surface acts as an efficient whole-cell biocatalyst for sugar ester production from fructose and lauric acid in an organic solvent. The effects of various reaction factors, including solvent composition, substrate molar ratio, enzyme dose, temperature and water activity, on esterification catalyzed by the CALB-displaying P. pastoris whole-cell biocatalyst were examined in the present study. Under the preferred reaction conditions, specifically, 5 mL organic solvent mixture of 2-methyl-2-butanol/DMSO (20% v/v), 2 mmol fructose with a lauric acid to fructose molar ratio of 2:1, 0.3 g whole-cell biocatalyst (1,264 U/g dry cell) with an initial water activity of 0.11, 1.2 g 4Å molecular sieve, reaction temperature of 55oC and 200 rpm stirring speed, the fructose mono laurate ester yield was 78% (w/w). The CALBdisplaying P. pastoris whole-cell biocatalyst exhibited good operational stability, with an evident increase, rather than decrease, in relative activity after the continuous recover and reuse cycle. The relative activity of the biocatalyst remained 50% higher than that of the first batch, even following reuse for 15 batches. Our results collectively indicate that the CALB-displaying P. pastoris whole-cell biocatalyst may be potentially utilized in lieu of free or immobilized enzyme to effectively produce non-ionic surfactants such as fatty acid sugar esters, offering the significant advantages of cost-effectiveness, good operational stability and mild reaction conditions.

  相似文献   

7.
Carbonic anhydrase (CA) activity associated with high- and low-dissolved inorganic carbon (C1) grown cells was examined in whole cells by measuring 18O exchange from doubly labeled CO2 (13C18O18O). Both algal species showed the presence of extracellular (periplasmic) as well as intracellular CA activity, which were both greatly increased in low-C1 cells. The periplasmic CA activity was at least 40-fold higher in lowcompared to high-C1 cells in both C. reinhardtii and S. obliquus. while low-C1 cells of S. obliquus showed the highest activity of internal CA. The CA inhibitor ethoxyzolamide showed a strong inhibition of the C1 uptake process in both C. reinhardtii and S. obliquus as in cyanobacteria. which may indicate that the nature of the primary uptake process is similar in both green algae and cyanobacteria. By using a mass spectrometnc disequilibrium technique it was possible to separate the C1 fluxes of net HCO?3-uptake and net CO2-uptake during steady-state photosynthesis in high- and Sow-C1 grown cells of Chlamydomonas reinhardtii (WT. 2137+) and Scenedesmus obliquus (WT. D3). It was found that both high- and low-C1 cells of the two algae can utilize both CO2 and HCO?3 for photosynthesis, although low-C1 cells have a higher affinity for the uptake of both C1 species. Induction at low-C1 causes an increase in the affinity of both species for HCO?3 and CO2; changes in net CO2-uptake were, however, significantly greater.  相似文献   

8.
The activity of periplasmic arylsulfatase (Ars), which catalyzes the cleavage of sulfate from aromatic sulfur compounds, was detected in cells acclimated to the sulfate-deficient conditions in a unicellular green alga Chlamydomonas reinhardtii Dangeard, but not in Chlorella, Scenedesmus, Dunaliella and Porphyridium. Upon the transfer of cells to sulfate-deficient autotrophic media under high-CO2 conditions, the induction of Ars was observed only in the light, but not in the light with dichlorophenyldimethylurea (DCMU) nor in the dark. However, Ars was induced in the light with DCMU or in the dark when acetate was present as an organic carbon source, but not citrate. Under similar high-CO2 conditions, high-CO2 requiring mutants of cia-3 and cia-5, whose photosynthetic activities are greatly limited under low CO2, showed much lower level of Ars activities than wild type cells. Under Iow-CO2 conditions the induction of Ars was greatly suppressed even in wild type and no induction was observed in both mutants. These results suggest that the stimulation of photosynthetic or respiratory carbon metabolism are necessary for the induction of Ars. In contrast, the induction of periplasmic carbonic anhydrase (CA) which was synthesized de novo specifically under CO2-limited conditions was strongly suppressed by the addition of organic carbon sources, such as acetate and citrate. When cells are subjected to CO2-limitation and sulfate-deficiency simultaneously, the induction of CA was initiated immediately, while that of Ars was initiated following the completion of CA induction with an about 4-h lag. When the concentration of CO2 was suddenly lowered during the induction of Ars, the induction of Ars ceased quickly, and the induction of CA was initiated instead. From these results the induction of CA was suggested to have priority over that of Ars under the dual stress of CO2, and sulfate-deprivation.  相似文献   

9.
Unicellular algae grown under low-CO2 conditions (0.03% CO2) have developed a means of concentrating CO2 at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase. Cells with the CO2-concentrating mechanism (CCM) acquire the ability to accumulate inorganic carbon to a level higher than that obtained by simple diffusion. To identify proteins which are involved in the organization of the CCM, cells of Scenedesumus obliquus and Chlorella vulgaris grown in high CO2 (5% CO2 in air) were transferred to low-CO2 (0.03%) conditions in the presence of 35SO inf4 sup2? and, thereafter, polypeptides labeled with 35S were detected. Under low-CO2 conditions the inducton of 36-, 39-, 94- and 110- to 116kDa polypeptides were particularly observed in S. obliquus and 16-, 19-, 27-, 36-, 38- and 45-kDa polypeptides were induced in C. vulgaris. Western blots with antibodies raised against 37-kDa subunits of the periplasmic carbonic anhydrase (CA) of Chlamydomonas reinhardtii showed immunoreactive bands with the 39-kDa polypeptide in the whole-cell homogenates from S. obliquus and with 36 and 38-kDa polypeptides in both high- and low-CO2grown cells of C. vulgaris. Anti-pea-chloroplast CA antibodies cross-reacted with a single polypeptide of 30 kDa in the whole-cell homogenates but not with thylakoid membranes. The CA activity was associated with soluble and membrane-bound fractions, except thylakoid membranes.  相似文献   

10.
Carbonic anhydrase is a valuable and efficient catalyst for CO2 hydration. Most often the free enzyme is employed which complicates catalyst recycling, and can increase cost due to the need for protein purification. Immobilization of the enzyme may address these shortcomings. Here we report the development of whole‐cell biocatalysts for CO2 hydration via periplasmic expression of two forms of carbonic anhydrase in Escherichia coli using two different targeting sequences. The enzymatic turnover numbers (kcat) and catalytic efficiencies (kcat/KM) were decreased by an order of magnitude as compared to the free soluble enzyme, indicating the introduction of transport limitations. However, the thermal stabilities were improved for most configurations (>88% activity retention up to 95°C for three of four whole‐cell biocatalysts), operational stabilities were more than satisfactory (100% retention after 24 h of use for all four whole‐cell biocatalysts), and CO2 hydration was significantly enhanced relative to the uncatalyzed reaction (~50–70% increase in CaCO3 precipitate formed). A significant advantage of the whole‐cell approach is that protein purification is no longer necessary, and the cells can be easily separated and recycled in future applications including biofuel production, biosensors, and carbon capture and storage. Biotechnol. Bioeng. 2013; 110: 1865–1873. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
To prepare a whole-cell biocatalyst of a stable lipase at a low price, mutated Candida antarctica lipase B (mCALB) constructed on the basis of the primary sequences of CALBs from C. antarctica CBS 6678 strain and from C. antarctica LF 058 strain was displayed on a yeast cell surface by α-agglutinin as the anchor protein for easy handling and stability of the enzyme. When mCALB was displayed on the yeast cell surface, it showed a preference for short chain fatty acids, an advantage for producing flavors; although when Rhizopus oryzae lipase (ROL) was displayed, the substrate specificity was for middle chain lengths. When the thermal stability of mCALB on the cell surface was compared with that of ROL on a cell surface, T 1/2, the temperature required to give a residual activity of 50% for heat treatment of 30 min, was 60°C for mCALB and 44°C for ROL indicating that mCALB displayed on cell surface has a higher thermal stability. Furthermore, the activity of the displayed mCALB against p-nitrophenyl butyrate was 25-fold higher than that of soluble CALB, as reported previously. These findings suggest that mCALB-displaying yeast is more practical for industrial use as the whole-cell biocatalyst.  相似文献   

12.
Selection of a whole-cell biocatalyst for methyl parathion biodegradation   总被引:1,自引:0,他引:1  
Whole-cell biocatalyst has the potential to become a cost-effective alternative to conventional enzyme methods for solving ecological and energy issues. However, cytosolic-expressing biocatalyst systems are critically disadvantaged due to the low permeability of the cell membrane. To overcome substrate transport barrier, periplasmic secretion and surface display biocatalysts were developed by expressing signal peptides or anchor proteins in Escherichia coli. In this work, six carriers were compared in regard to whole-cell activity of methyl parathion hydrolase (MPH). Our results indicate that the surface display systems yielded one to three times whole-cell activity than the periplasmic secretion systems. Although periplasmic secretion systems showed generally more stable than surface display systems, surface display appeared more suitable for whole-cell biocatalyst. It should note that the applicability of the DsbA/PhoA/AIDA-I leader to MPH expression is shown here for the first time. In addition, the result provided a useful reference for other whole-cell biocatalyst selection.  相似文献   

13.
In the green alga Chlorella vulgaris UAM 101, a CO2-concentrating mechanism (CCM) is induced when cells are transferred from high (5%) to low (0.03%) CO2 concentrations. The induction of the CCM is correlated with de-novo synthesis of several polypeptides that remain to be identified. The internal carbonic anhydrase (CA; EC 4.2.1.1) activity increased 6- to 7-fold within 6 h of acclimation to air. When crude homogenates were further separated into soluble and insoluble fractions, nearly all of the CA activity was associated with the membrane fraction. Immunoblot analysis of cell homogenates probed with antibodies raised against the 37-kDa subunit of periplasmic CA of Chlamydomonas reinhardtii showed a cross-reaction with a single 38-kDa polypeptide in both high- and low-CO2-grown cells. The up-regulation of the expression of the 38-kDa polypeptide was closely correlated with the increase in internal CA activity. Furthermore, its subcellular location was also correlated with the distribution of the activity. Immunoblot analysis of pyrenoid fractions showed that the 38-kDa polypeptide was concentrated in the pyrenoids from low-CO2-grown cells but was not present in pyrenoids from high-CO2-grown cells. In addition, immunogold labeling experiments showed that the protein was mainly associated with membranes crossing the pyrenoid, while it was absent from the pyrenoid matrix. These studies have identified a putative intracellular CA polypeptide associated with the pyrenoid in Chlorella vulgaris, suggesting that this structure may play an important role in the operation of the CCM and the acclimation to low CO2 conditions. Received: 16 July 1997 / Accepted: 26 April 1998  相似文献   

14.
To develop a novel yeast whole-cell biocatalyst by yeast surface display technology that can hydrolyze chitin, the chitinaseC gene from Serratia marcescens AS1.1652 strain was cloned and subcloned into the yeast surface display plasmid pYD1, and the recombinant plasmid pYD1/SmchiC was electroporated into Saccharomyces cerevisiae EBY100 cell. Aga2p-SmChiC fusion protein was expressed and anchored on the yeast cell surface by induction with galactose, which was verified by indirect immunofluorescence and Western blotting. The chitinolytic activity of the yeast whole-cell biocatalyst or partially purified enzyme was detected by agar plate clear zone test, SDS-PAGE zymography and dinitrosalicylic acid method. The results showed that the chitinaseC gene from S. marcescens AS1.1652 strain was successfully cloned and expressed on the yeast cell surface, Aga2p-SmChiC fusion protein with molecular weight (67 kDa) was determined. Tests on the effect of temperature and pH on enzyme activity and stability revealed that the yeast whole-cell biocatalyst and partially purified enzyme possessed both thermal stability and activity, and even maintained some activity under acidic and weakly alkaline conditions. The optimum reaction temperature and pH value were set at 52 °C and 5.0, respectively. Yeast surface display technology succeeded in preparing a yeast whole-cell biocatalyst with chitinolytic activity, and the utilization of chitin could benefit from this process of enzyme preparation.  相似文献   

15.
16.
Abstract

Carbonic anhydrase (CA) is the most effective CO2 hydratase catalyst, but the poor storage stability and repeatability of CA limit its development. Therefore, CA was immobilized on the epoxy magnetic composite microspheres to enhance the CO2 absorption into N-methyldiethanolamine (MDEA) aqueous solution in this work. In the presence of immobilized CA, the CO2 absorption rate of MDEA solution (10?wt%) (0.63?mmol·min?1) was greatly improved by almost 40%, and their reaction equilibrium time was shortened from 150?min to 90?min compared with that into MDEA solution. The results indicated that the absorption of CO2 into MDEA solution had been significantly enhanced by using CA. After the 7th reuse recycle, the activity of the immobilized CA was still closed to its initial value at 313.15?K. Moreover, enzyme catalytic kinetics of immobilized CA was investigated using the p-nitrophenyl acetate (p-NPA) as substrate. The values of Michaelis–Menten constant (Km) and the maximum velocity (Vmax) of the immobilized CA were calculated to be 27.61?mmol/L and 20.14?×?10?3?mmol·min?1·mL?1, respectively. Besides, the kinetics of CO2 reaction into MDEA with or without CA were also compared. The results showed that CO2 absorption into CA/MDEA aqueous solution obeyed the pseudo first order regime and the second order kinetics rate constant (k2) was calculated to be 929?m3·kmol?1·s?1, which was twice higher than that of MDEA aqueous solution without immobilized CA (k2=414 m3·kmol?1·s?1) at 313.15?K.  相似文献   

17.
贵州喀斯特森林三种植物对不同坡位环境的光合生理响应   总被引:1,自引:0,他引:1  
该研究以贵州普定喀斯特森林中、下坡位生长的构树( Broussonetia papyrifera)、朴树( Celtis sinensis)和光滑悬钩子( Rubus tsangii)为材料,通过对碳酸酐酶( CA)活性、光合作用日变化、净光合速率对CO2与光的响应曲线、叶绿素荧光特性以及稳定碳同位素组成等指标的测定,进而对比分析三种植物不同的光合生理响应特性。结果表明:构树光合作用过程的无机碳源既可来自大气中的CO2,也可以在气孔部分闭合的情况下利用细胞内的HCO3-,下坡位的构树较高的CA活性使其利用HCO3-的效率会更高,并能在较低光强下具有较高的光能利用效率。这可能与下坡位的构树具有较高的CA活性有关,对下坡位具有更好的适应性。朴树光合无机碳的同化能力最低,且光合无机碳源较单一,主要利用大气CO2,其较慢的生长速率使其对无机碳的需求最低,且能保持较稳定的无机碳同化速率。相对来说,中坡位的朴树具有相对较高的净光合速率和光能利用效率,对中坡位表现出较好的适应性。光滑悬钩子主要利用大气中的CO2进行光合作用。中坡位的光滑悬钩子具有较强的光能利用效率,并表现出较高的净光合速率,光滑悬钩子对中坡位同样表现出较好的适应性。该研究结果为喀斯特生态脆弱区植被重建过程中树种的选择及合理配置提供了科学依据。  相似文献   

18.
Uptake, efflux and utilization of inorganic carbon were investigated in the marine eustigmatophyte Nannochloropsis sp. grown under an air level of CO2. Maximal photosynthetic rate was hardly affected by raising the pH porn 5.0 to 9.0. The apparent photosynthetic affinity for dissolved inorganic carbon (DIC) was 35 μM DIC between pH 6.5 to 9.0, but increased approximately threefold at pH 5.0 suggesting that HCO3- was the main DIC species used from the medium. No external carbonic anhydrase (CA) activity could be detected by the pH drift method. However, application of ethoxyzolamide (an inhibitor of CA) resulted an a significant inhibition of photosynthetic O2 evolution and carbon utilization, suggesting involvement of internal CA or CA-like activity in DIC utilization. Under high light conditions, the rate of HCO3? uptake and its internal conversion to CO2 apparently exceeded the rate of carbon fixation, resulting in a large leak of CO2 from the cells to the external medium. When the cells were exposed to low DIC concentrations, the ratio of internal to external DIC concentration was about eight. On the other hand, in the presence of 2 mM DIC, conditions prevailing in the marine environment, the internal concentration of DIC was only 50% higher than the external one.  相似文献   

19.
The carbonic anhydrase superfamily (CA, EC 4.2.1.1) of metalloenzymes is present in all three domains of life (Eubacteria, Archaea, and Eukarya), being an interesting example of convergent/divergent evolution, with its seven families (α-, β-, γ-, δ-, ζ-, η-, and θ-CAs) described so far. CAs catalyse the simple, but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Recently, our groups characterised the α-CA from the thermophilic bacterium, Sulfurihydrogenibium yellowstonense finding a very high catalytic activity for the CO2 hydration reaction (kcat?=?9.35?×?105?s?1 and kcat/Km?=?1.1?×?108?M?1?s?1) which was maintained after heating the enzyme at 80?°C for 3?h. This highly thermostable SspCA was covalently immobilised within polyurethane foam and onto the surface of magnetic Fe3O4 nanoparticles. Here, we describe a one-step procedure for immobilising the thermostable SspCA directly on the surface membrane of Escherichia coli, using the INPN domain of Pseudomonas syringae. This strategy has clear advantages with respect to other methods, which require as the first step the production and the purification of the biocatalyst, and as the second step the immobilisation of the enzyme onto a specific support. Our results demonstrate that thermostable SspCA fused to the INPN domain of P. syringae ice nucleation protein (INP) was correctly expressed on the outer membrane of engineered E. coli cells, affording for an easy approach to design biotechnological applications for this highly effective thermostable catalyst.  相似文献   

20.
An array of genetic screens and selections has been developed for reporting protein folding and solubility in the cytoplasm of living cells. However, there are currently no analogous folding assays for the bacterial periplasm, despite the significance of this compartment for the expression of recombinant proteins, especially those requiring important posttranslational modifications (e.g., disulfide bond formation). Here, we describe an engineered genetic selection for monitoring protein folding in the periplasmic compartment of Escherichia coli cells. In this approach, target proteins are sandwiched between an N‐terminal signal recognition particle (SRP)‐dependent signal peptide and a C‐terminal selectable marker, TEM‐1 β‐lactamase. The resulting chimeras are localized to the periplasmic space via the cotranslational SRP pathway. Using a panel of native and heterologous proteins, we demonstrate that the folding efficiency of various target proteins correlates directly with in vivo β‐lactamase activity and thus resistance to ampicillin. We also show that this reporter is useful for the discovery of extrinsic periplasmic factors (e.g., chaperones) that affect protein folding and for obtaining folding‐enhanced proteins via directed evolution. Collectively, these data demonstrate that our periplasmic folding reporter is a powerful tool for screening and engineering protein folding in a manner that does not require any structural or functional information about the target protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号