首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a 150 microL microbioreactor fabricated in poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) to cultivate microbial cell cultures. Mixing is achieved by a small magnetic stir bar and fluorescent sensors are integrated for on-line measurement of pH and dissolved oxygen. Optical transmission measurements are used for cell density. The body of the reactor is poly(methylmethacrylate) with a thin layer of poly (dimethylsiloxane) for aeration, oxygen diffuses through this gas-permeable membrane into the microbioreactor to support metabolism of bacterial cells. Mixing in the reactor is characterized by observation of mixing of dyes and computational fluid dynamics simulations. The oxygenation is described in terms of measured K(L)a values for microbioreactor, 20-75/h corresponding to increasing stirring speed 200-800 rpm. Escherichia coli cell growth in the microbioreactor is demonstrated and the growth behavior is benchmarked with conventional bench-scale bioreactors, flasks and tubes. Batch culture experiments with Saccharomyces cerevisiae further demonstrate the reproducibility and flexibility of the microbioreactor system.  相似文献   

2.
A novel cathepsin B inhibitor-producing bacterium was isolated from marine sediments and identified based on its 16S rDNA sequence as Pseudomonas sp. strain PB01 (Accession No. EU126129). The growth and enzyme inhibitor production were investigated under various culture conditions. A mixture of organic nitrogen source was required for the optimal production, whereas both glucose and maltose proved to be the effective carbon sources for cathepsin B inhibitor production. Other optimal culture conditions included temperature range between 25 and 28 degrees , initial medium pH of 6.6, and shaking speed of 200 rpm. Under these optimal conditions, the maximum inhibitory activity from culture broth was approximately 50% after 30 h of cultivation. Additionally, kinetic study revealed that inhibitor production paralleled with cell growth, which suggested that the inhibitor may be a primary metabolite of that bacterium.  相似文献   

3.
《Cytotherapy》2022,24(9):869-878
Chimeric antigen receptor (CAR) T-cell therapy is an individualized immunotherapy that genetically reprograms a patient's T cells to target and eliminate cancer cells. Tisagenlecleucel is a US Food and Drug Administration-approved CD19-directed CAR T-cell therapy for patients with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia and r/r diffuse large B-cell lymphoma. Manufacturing CAR T cells is an intricate process that begins with leukapheresis to obtain T cells from the patient's peripheral blood. An optimal leukapheresis product is essential to the success of CAR T-cell therapy; therefore, understanding factors that may affect the quality or T-cell content is imperative. CAR T-cell therapy requires detailed organization throughout the entire multistep process, including appropriate training of a multidisciplinary team in leukapheresis collection, cell processing, timing and coordination with manufacturing and administration to achieve suitable patient care. Consideration of logistical parameters, including leukapheresis timing, location and patient availability, when clinically evaluating the patient and the trajectory of their disease progression must be reflected in the overall collection strategy. Challenges of obtaining optimal leukapheresis product for CAR T-cell manufacturing include vascular access for smaller patients, achieving sufficient T-cell yield, eliminating contaminating cell types in the leukapheresis product, determining appropriate washout periods for medication and managing adverse events at collection. In this review, the authors provide recommendations on navigating CAR T-cell therapy and leukapheresis based on experience and data from tisagenlecleucel manufacturing in clinical trials and the real-world setting.  相似文献   

4.
A chitinase-producing bacterium was isolated from seashore mud around Beobseongpo in Chunmam province through the use of a selective enrichment culture. The best chitinase producing strain was isolated and identified asSerratia marcescens KY from its characteristics. For effective production of chitinase, optimum pH, temperature, and agitation speed were investigated in flask cultures. The optimum pH usingSerratia marcescens KY was between pH 6 and 7 and the chitinase produced was 37.9 unit/mL. On the other hand, the optimal pH of theSerratia marcescens ATCC 27117 was 7.5, and the produced amount of chitinase was 35.2 unit/mL. The optimal temperature for chitinase production forSerratia marcescens KY andSerratia marcescens ATCC 27117 was 30°C. The cell growth pattern at different temperature was almost identical to the chitinase production. To investigate the optimal shaking speed under optimal culture, speeds were varied in the range of 0≈300 rpm. The maximum production of chitinase was carried at 200 rpm although the cell growth was the highest at 150 rpm. It indicates that oxygen adjustment is required for the maximum chitinase production. Using optimal conditions, batch cultures for comparingSerratia marcescens KY andSerratia marcescens ATCC 27117 were carried out in a 5 L fermentor. The oxygen consumption was increased with the increase of culture. Especially, at 120 h of cultureSerratia marcescens KY andSerratia marcescens ATCC 27117 produced 38.3 unit/mL, and 33.5 unit/mL, respectively.  相似文献   

5.
CD4 T cells are important for control of infection with murine gammaherpesvirus 68 (gamma HV68), but it is not known whether CD4 T cells function via provision of help to other lymphocyte subsets, such as B cells and CD8 T cells, or have an independent antiviral function. Moreover, under conditions of natural infection, the CD4 T-cell response is not sufficient to eliminate infection. To determine the functional capacities of CD4 T cells under optimal or near-optimal conditions and to determine whether CD4 T cells can control gamma HV68 infection in the absence of CD8 T cells or B cells, we studied the effect of ovalbumin (OVA)-specific CD4 T cells on infection with a recombinant gamma HV68 that expresses OVA. OVA-specific CD4 T cells limited acute gamma HV68 replication and prolonged the life of infected T-cell receptor-transgenic RAG (DO.11.10/RAG) mice, demonstrating CD4 T-cell antiviral activity, independent of CD8 T cells and B cells. Despite CD4 T-cell-mediated control of acute infection, latent infection was established in DO.11.10/RAG mice. However, OVA-specific CD4 T cells reduced the frequency of latently infected cells both early (16 days postinfection) and late (42 days postinfection) after infection of mice containing CD8 T cells and B cells (DO.11.10 mice). These results show that OVA-specific CD4 T cells have B-cell and CD8 T-cell-independent antiviral functions in the control of acute infection and can, in the absence of preexisting CD8 T-cell or B-cell immunity, inhibit the establishment of gammaherpesvirus latency.  相似文献   

6.
Increasing the throughput and efficiency of cell culture process development has become increasingly important to rapidly screen and optimize cell culture media and process parameters. This study describes the application of a miniaturized bioreactor system as a scaled-down model for cell culture process development using a CHO cell line expressing a recombinant protein. The microbioreactor system (M24) provides non-invasive online monitoring and control capability for process parameters such as pH, dissolved oxygen (DO), and temperature at the individual well level. A systematic evaluation of the M24 for cell culture process applications was successfully completed. Several challenges were initially identified. These included uneven gas distribution in the wells due to system design and lot to lot variability, foaming issues caused by sparging required for active DO control, and pH control limitation under conditions of minimal dissolved CO2. A high degree of variability was found which was addressed by changes in the system design. The foaming issue was resolved by addition of anti-foam, reduction of sparge rate, and elimination of DO control. The pH control limitation was overcome by a single manual liquid base addition. Intra-well reproducibility, as indicated by measurements of process parameters, cell growth, metabolite profiles, protein titer, protein quality, and scale-equivalency between the M24 and 2 L bioreactor cultures were very good. This evaluation has shown feasibility of utilizing the M24 as a scale-down tool for cell culture application development under industrially relevant process conditions.  相似文献   

7.
Three different dissolved oxygen (DO) control approaches were proposed to improve hyaluronic acid (HA) production: a three-stage agitation speed control approach, a two-stage DO control approach, and an oxygen vector perfluorodecalin (PFC) applied approach. In the three-stage agitation speed control approach, agitation speed was 200 rpm during 0–8 h, 400 rpm during 8–12 h, and 600 rpm during 12–20 h. In the two-stage DO control strategy, DO was controlled at above 10% during 0–8 h and at 5% during 8–20 h. In the PFC applied approach, PFC (3% v/v) was added at 8 h. HA production reached 5.5 g/L in the three-stage agitation speed control culture model, and 6.3 g/L in two-stage DO control culture model, and 6.6 g/L in the PFC applied culture model. Compared with the other two DO control approaches, the PFC applied approach had a lower shear stress and thus a higher HA production was achieved.  相似文献   

8.
To maximize the productivity of virginiamycin, which is a commercially important antibiotic as an animal feed additive, an empirical approach was employed in the batch culture of Streptomyces virginiae. Here, the effects of dissolved oxygen (DO) concentration and agitation speed on the maximum cell concentration at the production phase, as well as on the productivity of virginiamycin, were investigated. To maintain the DO concentration in the fermentor at a certain level, either the agitation speed or the inlet oxygen concentration of the supply gas was manipulated. It was found that increasing the agitation speed had a positive effect on the antibiotic productivity independent of the DO concentration. The optimum DO concentration, agitation speed and addition of an autoregulator, virginiae butanolide C (VB-C), were determined to maximize virginiamycin productivity. The optimal strategy was to start the cultivation at 450 rpm and to continue until the DO concentration reached 80%. After reaching 80%, the DO concentration was maintained at this level by changing the agitation speed, up to a maximum of 800 rpm. The addition of an optimal amount of the autoregulator VB-C in an experiment resulted in the maximal production of virginiamycin M (399 mg/l), which was about 1.8-fold those obtained previously. Received: 13 July 1998 / Received revision: 19 August 1998 / Accepted: 13 September 1998  相似文献   

9.
Membrane-aerated microbioreactor for high-throughput bioprocessing   总被引:2,自引:0,他引:2  
A microbioreactor with a volume of microliters is fabricated out of poly(dimethylsiloxane) (PDMS) and glass. Aeration of microbial cultures is through a gas-permeable PDMS membrane. Sensors are integrated for on-line measurement of optical density (OD), dissolved oxygen (DO), and pH. All three parameter measurements are based on optical methods. Optical density is monitored via transmittance measurements through the well of the microbioreactor while dissolved oxygen and pH are measured using fluorescence lifetime-based sensors incorporated into the body of the microbioreactor. Bacterial fermentations carried out in the microbioreactor under well-defined conditions are compared to results obtained in a 500-mL bench-scale bioreactor. It is shown that the behavior of the bacteria in the microbioreactor is similar to that in the larger bioreactor. This similarity includes growth kinetics, dissolved oxygen profile within the vessel over time, pH profile over time, final number of cells, and cell morphology. Results from off-line analysis of the medium to examine organic acid production and substrate utilization are presented. By changing the gaseous environmental conditions, it is demonstrated that oxygen levels within the microbioreactor can be manipulated. Furthermore, it is demonstrated that the sensitivity and reproducibility of the microbioreactor system are such that statistically significant differences in the time evolution of the OD, DO, and pH can be used to distinguish between different physiological states. Finally, modeling of the transient oxygen transfer within the microbioreactor based on observed and predicted growth kinetics is used to quantitatively characterize oxygen depletion in the system.  相似文献   

10.
A mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was performed to enhance lipid production from industrial wastes. These included effluent from seafood processing plant and molasses from sugar cane plant. In the mixed culture, the yeast grew faster and the lipid production was higher than that in the pure cultures. This could be because microalga acted as an oxygen generator for yeast, while yeast provided CO(2) to microalga and both carried out the production of lipids. The optimal conditions for lipid production by the mixed culture were as follows: ratio of yeast to microalga at 1:1; initial pH at 5.0; molasses concentration at 1%; shaking speed at 200 rpm; and light intensity at 5.0 klux under 16:8 hours light and dark cycles. Under these conditions, the highest biomass of 4.63±0.15 g/L and lipid production of 2.88±0.16 g/L were obtained after five days of cultivation. In addition, the plant oil-like fatty acid composition of yeast and microalgal lipids suggested their high potential for use as biodiesel feedstock.  相似文献   

11.
The effects of pH, agitation speed, and dissolved oxygen tension (DOT), significant in common fungal fermentations, on the production of polygalacturonase (PG) enzyme and their relation to morphology and broth rheology were investigated using Aspergillus sojae in a batch bioreactor. All three factors were effective on the response parameters under study. An uncontrolled pH increased biomass and PG activity by 27% and 38%, respectively, compared to controlled pH (pH 6) with an average pellet size of 1.69 +/- 0.48 mm. pH did not significantly affect the broth rheology but created an impact on the pellet morphology. Similarly, at constant agitation speed the maximum biomass obtained at 500 rpm and at 30 h was 3.27 and 3.67 times more than at 200 and 350 rpm, respectively, with an average pellet size of 1.08 +/- 0.42 mm. The maximum enzyme productivity of 0.149 U mL-1 h-1 was obtained at 200 rpm with an average pellet size of 0.71 +/- 0.35 mm. Non-Newtonian and pseudoplastic broth rheology was observed at 500 rpm agitation speed, broth rheology exhibited dilatant behavior at the lower agitation rate (200 rpm), and at the medium agitation speed (350 rpm) the broth was close to Newtonian. Furthermore, a DOT range of 30-50% was essential for maximum biomass formation, whereas only 10% DOT was required for maximum PG synthesis. Non-Newtonian shear thickening behavior (n > 1.0) was depicted at DOT levels of 10% and 30%, whereas non-Newtonian shear thinning behavior (n < 1.0) was dominant at 50% DOT. The overall fermentation duration (50-70 h) was considerably shorter compared to common fungal fermentations, revealing the economic feasibility of this particular process. As a result this study not only introduced a new strain with a potential of producing a highly commercially significant enzyme but also provided certain parameters significant in the design and mathematical modeling of fungal bioprocesses.  相似文献   

12.
The effect of both dissolved oxygen (DO) and pH on l-isoleucine production by batch culture of Brevibacterium lactofermentum was investigated. A two-stage agitation speed control strategy was developed, and the isoleucine production reached 23.3 g L−1 in a relative short time (52 h), increased by 11.6% compared to the results obtained in the single agitation speed control process. In order to make sure whether the combination of DO and pH control can boost the production by a mutual effect, different control modes were conducted, based on the data obtained from the two-stage agitation speed control strategy and the analysis of kinetics parameters at different pH values. The results showed that the mode of combining two-stage DO with two-stage pH control strategy was the optimal for isoleucine production. The isoleucine production can reach 26.6 g L−1 at 56 h, increased by 14.3% comparing to that obtained by the single two-stage DO control strategy.  相似文献   

13.
Mammalian cells are the most frequently used hosts for biopharmaceutical proteins manufacturing. Inoculum quality is a key element for establishing an efficient bioconversion process. The main objective in inoculation expansion process is to generate large volume of viable cells in the shortest time. The aim of this paper was to optimize the inoculum preparation stage of baby hamster kidney (BHK)-21 cells for suspension cultures in benchtop bioreactors, by means of a combination of static and agitated culture systems. Critical parameters for static (liquid column height: 5, 10, 15 mm) and agitated (working volume: 35, 50, 65 mL, inoculum volume percentage: 10, 30 % and agitation speed: 25, 60 rpm) cultures were study in T-flask and spinner flask, respectively. The optimal liquid column height was 5 mm for static culture. The maximum viable cell concentration in spinner flask cultures was reached with 50 mL working volume and the inoculum volume percentage was not significant in the range under study (10–30 %) at 25 rpm agitation. Agitation speed at 60 rpm did not change the main kinetic parameters with respect to those observed for 25 rpm. These results allowed for a schedule to produce more than 4 × 109 BHK-21 cells from 4 × 106 cells in 13 day with 1,051 mL culture medium.  相似文献   

14.
在摇瓶和5 L发酵罐中研究了溶氧 (DO) 对Blakeslea trispora分批发酵生产β-胡萝卜素的影响,总结了5 L发酵罐中β-胡萝卜素发酵过程中溶氧的变化规律.结果表明,当500 mL摇瓶装液量为50 mL,转速为240 r/min条件下发酵生产β-胡萝卜素产量最大,达到3.416 g/L; 5 L发酵罐中,在搅拌转速为1 000 r/min,通气量为1.5 vvm的条件下,β-胡萝卜素的产量可达到3.712 g/L,略高于摇瓶,这可能是由于5 L发酵罐中的气液传递和混合状况好于摇瓶,促进了产物的合成.  相似文献   

15.
Manufacturing of cell therapy products requires sufficient understanding of the cell culture variables and associated mechanisms for adequate control and risk analysis. The aim of this study was to apply an unstructured ordinary differential equation-based model for prediction of T-cell bioprocess outcomes as a function of process input parameters. A series of models were developed to represent the growth of T-cells as a function of time, culture volumes, cell densities, and glucose concentration using data from the Ambr®15 stirred bioreactor system. The models were sufficiently representative of the process to predict the glucose and volume provision required to maintain cell growth rate and quantitatively defined the relationship between glucose concentration, cell growth rate, and glucose utilization rate. The models demonstrated that although glucose is a limiting factor in batch supplied medium, a delivery rate of glucose at significantly less than the maximal specific consumption rate (0.05 mg 1 × 106 cell h−1) will adequately sustain cell growth due to a lower glucose Monod constant determining glucose consumption rate relative to the glucose Monod constant determining cell growth rate. The resultant volume and exchange requirements were used as inputs to an operational BioSolve cost model to suggest a cost-effective T-cell manufacturing process with minimum cost of goods per million cells produced and optimal volumetric productivity in a manufacturing settings. These findings highlight the potential of a simple unstructured model of T-cell growth in a stirred tank system to provide a framework for control and optimization of bioprocesses for manufacture.  相似文献   

16.
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single‐use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large‐scale production and feasibility of meeting clinical‐grade standards. The current work evaluated the capacity of a single‐use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (kLa) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h?1, respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7‐fold with a total cell number of 1.2 ± 0.2 × 109 cells L?1. In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single‐use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362–369, 2018  相似文献   

17.
Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr?) is an automated micro‐bioreactor system with miniature single‐use bioreactors with a 10–15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in‐line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr? resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr? was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr? system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:718–727, 2014  相似文献   

18.
Cancer can be effectively targeted using a patient's own T cells equipped with synthetic receptors, including chimeric antigen receptors (CARs) that redirect and reprogram these lymphocytes to mediate tumor rejection. Over the past two decades, several strategies to manufacture genetically engineered T cells have been proposed, with the goal of generating optimally functional cellular products for adoptive transfer. Based on this work, protocols for manufacturing clinical-grade CAR T cells have been established, but these complex methods have been used to treat only a few hundred individuals. As CAR T-cell therapy progresses into later-phase clinical trials and becomes an option for more patients, a major consideration for academic institutions and industry is developing robust manufacturing processes that will permit scaling-out production of immunogene T-cell therapies in a reproducible and efficient manner. In this review, we will discuss the steps involved in cell processing, the major obstacles surrounding T-cell manufacturing platforms and the approaches for improving cellular product potency. Finally, we will address the challenges of expanding CAR T-cell therapy to a global patient population.  相似文献   

19.
为了提高樟叶越桔(Vacciniumdunalianum)悬浮培养细胞的生物量,以樟叶越桔叶片愈伤组织为试材,通过单因素试验探究不同蔗糖浓度、培养基pH值、培养基体积、初始接种量和摇床转速对悬浮培养细胞生长的影响,并根据响应面法Box-Behnken试验设计原理进行组合试验以优化培养条件。结果显示,以改良WPM培养基为基础培养基,樟叶越桔细胞悬浮培养的最优条件为40 g·L–1蔗糖、培养基pH5.2、培养基体积45 mL、初始接种量2.64 g和摇床转速为149 r·min–1,其细胞生物量干重为0.184 4 g,与理论预测值0.184 5 g较为接近,且细胞的生长曲线呈S型。研究结果为樟叶越桔悬浮培养细胞次生代谢产物的生产调控奠定了技术基础。  相似文献   

20.
Summary Some physical factors including initial pH of medium, cultivation temperature and shaking speed as well as reuse affecting the production of cholesterol oxidase (CholOx) in reactors containing calcium alginate-immobilized cells of Rhodococcus equi No. 23 were investigated. Results revealed that the free cells showed the maximum CholOx in the culture with an initial pH of 5.0, while culture inoculated with immobilized cells exhibited a broad pH range, 6.0–9.0, for maximum CholOx production. The immobilized and free cells produced the maximum CholOx in the culture incubated at 30 and 25°C, respectively. The CholOx production decreased upon increasing the cultivation temperature. Increasing CholOx activity was also noted for both immobilized and free cells of R. equi No. 23 in the culture with increasing shaking speed. Under the optimal culture conditions, that were established, a higher maximum CholOx production of 0.94 unit/ml was found for immobilized R. equi No. 23 compared to that of 0.84 unit/ml for free cells after 48 h of cultivation. Furthermore, no gel leakage was noted after re-use of the calcium alginate-immobilized R. equi No. 23 for seven consecutive 48 h batch culture. The CholOx production in the seventh cycle was about 60.4% of that obtained in the first cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号