首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a novel strategy to produce vaccine antigens using a plant cell‐suspension culture system in lieu of the conventional bacterial or animal cell‐culture systems. We generated transgenic cell‐suspension cultures from Nicotiana benthamiana leaves carrying wild‐type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot‐and‐mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co‐expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large‐scale production of immunopeptide vaccines in a cost‐effective manner using a plant cell‐suspension culture system.  相似文献   

2.
The capsular polysaccharide (PS) is the most important pneumococcal virulence factor and is currently used as antigen in all pneumococcal vaccines. Despite its physiological and epidemiological importance, meager studies have been devoted to improve PS production and understand its relationship with pneumococcal central metabolism. In this study, kinetics of growth and production of PS by Streptococcus pneumoniae serotype 14 (PS14) in batch and continuous cultivation were investigated. Strong cell lysis was observed in batch cultivation, while accumulation of organic acids and autolysis was avoided in continuous cultivation. In the continuous cultivation was possible to achieve higher concentration of biomass and PS14. Calculation of kinetic parameters demonstrated that PS14 is a cell-associated product. The coefficients for growth-associated stoichiometric true yield and maintenance were determined as 0.25 gglucose gbiomass−1 and 1.24 gglucose (gbiomass h)−1, respectively. The maximum productivity of PS14 released in the supernatant (PS14R) and cell-bound PS14 (PS14C) were obtained at a dilution rate of 0.8 h−1, respectively, 85 and 122 mg  (gbiomass h)−1. Compared to batch fermentation, both PS14R and PS14C productivities were increased by about 300% in the continuous process. These findings demonstrate that continuous cultivation is a promising strategy for PS production to be used in pneumococcal vaccines.  相似文献   

3.
The 23-valent polysaccharide vaccine and the 7-valent pneumococcal conjugate vaccine are licensed vaccines that protect against pneumococcal infections worldwide. However, the incidence of pneumococcal diseases remains high in low-income countries. Whole-cell vaccines with high safety and strong immunogenicity may be a favorable choice. We previously obtained a capsule-deficient Streptococcus pneumoniae mutant named SPY1 derived from strain D39. As an attenuated live pneumococcal vaccine, intranasal immunization with SPY1 elicits broad serotype-independent protection against pneumococcal infection. In this study, for safety consideration, we inactivated SPY1 with 70% ethanol and intranasally immunized BALB/c mice with killed SPY1 plus cholera toxin adjuvant for four times. Results showed that intranasal immunization with inactivated SPY1 induced strong humoral and cellular immune responses. Intranasal immunization with inactivated SPY1 plus cholera toxin adjuvant elicited effective serotype-independent protection against the colonization of pneumococcal strains 19F and 4 as well as lethal infection of pneumococcal serotypes 2, 3, 14, and 6B. The protection rates provided by inactivated SPY1 against lethal pneumococcal infection were comparable to those of currently used polysaccharide vaccines. In addition, vaccine-specific B-cell and T-cell immune responses mediated the protection elicited by SPY1. In conclusion, the 70% ethanol-inactivated pneumococcal whole-cell vaccine SPY1 is a potentially safe and less complex vaccine strategy that offers broad protection against S. pneumoniae.  相似文献   

4.
Most studies of Lactococcus lactis as delivery vehicles of pneumococcal antigens are focused on the effectiveness of mucosal recombinant vaccines against Streptococcus pneumoniae in animal models. At present, there are three types of pneumococcal vaccines: capsular polysaccharide pneumococcal vaccines (PPV), protein-polysaccharide conjugate pneumococcal vaccines (PCV) and protein-based pneumococcal vaccines (PBPV). Only PPV and PCV have been licensed. These vaccines, however, do not represent a definitive solution. Novel, safe and inexpensive vaccines are necessary, especially in developing countries. Probiotic microorganisms such as lactic acid bacteria (LAB) are an interesting alternative for their use as vehicles in pneumococcal vaccines due to their GRAS (Generally Recognized As Safe) status. Thus, the adjuvanticity of Lactococcus lactis by itself represents added value over the use of other bacteria, a question dealt with in this review. In addition, the expression of different pneumococcal antigens as well as the use of oral and nasal mucosal routes of administration of lactococcal vaccines is considered. The advantages of nasal live vaccines are evident; nonetheless, oral vaccines can be a good alternative when the adequate dose is used. Another point addressed here is the use of live versus inactivated vaccines. In this sense, few researchers have focused on inactivated strains to be used as vaccines against pneumoccoccus. The immunogenicity of live vaccines is better than the one afforded by inactivated ones; however, the probiotic-inactivated vaccine combination has improved this matter considerably. The progress made so far in the protective immune response induced by recombinant vaccines, the successful trials in animal models and the safety considerations of their application in humans suggest that the use of recombinant vaccines represents a good short-term option in the control of pneumococcal diseases.  相似文献   

5.
The rapid spread of avian influenza (H5N1) and its transmission to humans has raised the possibility of an imminent pandemic and concerns over the ability of standard influenza vaccine production methods to supply sufficient amounts of an effective vaccine. We report here on a robust and flexible strategy which uses wild-type virus grown in a continuous cell culture (Vero) system to produce an inactivated whole virus vaccine. Candidate vaccines based on clade 1 and clade 2 influenza H5N1 strains, produced at a variety of manufacturing scales, were demonstrated to be highly immunogenic in animal models without the need for adjuvant. The vaccines induce cross-neutralising antibodies and are protective in a mouse challenge model not only against the homologous virus but against other H5N1 strains, including those from other clades. These data indicate that cell culture-grown, whole virus vaccines, based on the wild-type virus, allow the rapid high-yield production of a candidate pandemic vaccine.  相似文献   

6.
Adoption of new vaccines in developing countries is critical to reducing child mortality and meeting Millennium Development Goal 4. However, such introduction has historically suffered from significant delays that can be attributed to various factors including (i) lack of recognition of the value of a vaccine, (ii) factors related to weak health systems, and (iii) policy considerations. Recently, the Global Alliance for Vaccines and Immunization (GAVI) supported efforts to accelerate the introduction of Haemophilus influenzae type b (Hib) vaccines in developing countries, which resulted in a significant surge in vaccine adoption by these countries. The experience with Hib vaccines, as well as similar efforts by GAVI to support the introduction of new pneumococcal and rotavirus vaccines, provides a strategy for new vaccine adoption that is reviewed in this paper, providing a useful model to help accelerate the uptake of other life-saving vaccines. This strategy addresses barriers for vaccine adoption by focusing on three major areas: (i) communications to increase awareness about the various factors needed for evidence-based decisions that meet a country's health goals; (ii) research activities to answer key questions that support vaccine introduction and long-term programme sustainability; and (iii) coordination with the various stakeholders at global, regional and country levels to ensure successful programme implementation.  相似文献   

7.
Conjugated vaccines prepared from the capsular polysaccharide of Streptococcus pneumoniae can provide immunization against invasive pneumococcal disease, meningitis, and otitis media. One of the critical steps in the production of these vaccines is the removal of free (unreacted) polysaccharides from the protein-polysaccharide conjugate. Experimental studies were performed to evaluate the effects of membrane pore size, filtrate flux, and solution conditions on the transmission of both the conjugate and free polysaccharide through different ultrafiltration membranes. Conjugate purification was done using diafiltration performed in a linearly-scalable tangential flow filtration cassette. More than 98% of the free polysaccharide was removed within a 5-diavolume diafiltration process, which is a significant improvement over previously reported results for purification of similar conjugated vaccines. These results clearly demonstrate the opportunities for using ultrafiltration/diafiltration for the final purification of conjugated vaccine products.  相似文献   

8.

A live-attenuated, human vaccine against mosquito-borne yellow fever virus has been available since the 1930s. The vaccine provides long-lasting immunity and consistent mass vaccination campaigns counter viral spread. However, traditional egg-based vaccine manufacturing requires about 12 months and vaccine supplies are chronically close to shortages. In particular, for urban outbreaks, vaccine demand can be covered rarely by global stockpiling. Thus, there is an urgent need for an improved vaccine production platform, ideally transferable to other flaviviruses including Zika virus. Here, we present a proof-of-concept study regarding cell culture-based yellow fever virus 17D (YFV) and wild-type Zika virus (ZIKV) production using duck embryo-derived EB66® cells. Based on comprehensive studies in shake flasks, 1-L bioreactor systems were operated with scalable hollow fiber-based tangential flow filtration (TFF) and alternating tangential flow filtration (ATF) perfusion systems for process intensification. EB66® cells grew in chemically defined medium to cell concentrations of 1.6 × 108 cells/mL. Infection studies with EB66®-adapted virus led to maximum YFV titers of 7.3 × 108 PFU/mL, which corresponds to about 10 million vaccine doses for the bioreactor harvest. For ZIKV, titers of 1.0 × 1010 PFU/mL were achieved. Processes were automated successfully using a capacitance probe to control perfusion rates based on on-line measured cell concentrations. The use of cryo-bags for direct inoculation of production bioreactors facilitates pre-culture preparation contributing to improved process robustness. In conclusion, this platform is a powerful option for next generation cell culture-based flavivirus vaccine manufacturing.

  相似文献   

9.
Strategies for the development of new vaccines against Streptococcus pneumoniae infections try to overcome problems such as serotype coverage and high costs, present in currently available vaccines. Formulations based on protein candidates that can induce protection in animal models have been pointed as good alternatives. Among them, the Pneumococcal Surface Protein A (PspA) plays an important role during systemic infection at least in part through the inhibition of complement deposition on the pneumococcal surface, a mechanism of evasion from the immune system. Antigen delivery systems based on live recombinant lactic acid bacteria (LAB) represents a promising strategy for mucosal vaccination, since they are generally regarded as safe bacteria able to elicit both systemic and mucosal immune responses. In this work, the N-terminal region of clade 1 PspA was constitutively expressed in Lactobacillus casei and the recombinant bacteria was tested as a mucosal vaccine in mice. Nasal immunization with L. casei-PspA 1 induced anti-PspA antibodies that were able to bind to pneumococcal strains carrying both clade 1 and clade 2 PspAs and to induce complement deposition on the surface of the bacteria. In addition, an increase in survival of immunized mice after a systemic challenge with a virulent pneumococcal strain was observed.  相似文献   

10.
Cell culture-based production methods may assist in meeting increasing demand for seasonal influenza vaccines and developing production flexibility required for addressing influenza pandemics. MDCK-33016PF cells are used in propagation of a cell-based seasonal influenza vaccine (Optaflu®); but, like most continuous cell lines, can grow in immunocompromised mice to produce tumors. It is, therefore, essential that no residual cells remain within the vaccine, that cell lysates or DNA are not oncogenic, and that the cell substrate does not contain oncogenic viruses or oncogenic DNA. Multiple, redundant processes ensure the safety of influenza vaccines produced in MDCK-33016PF cells. The probability of a residual cell being present in a dose of vaccine is approximately 1 in 1034. Residual MDCK-DNA is ≤10 ng per dose and the ß-propiolactone used to inactivate influenza virus results in reduction of detectable DNA to less than 200 base pairs (bp). Degenerate PCR and specific PCR confirm exclusion of oncogenic viruses. The manufacturing process has been validated for its capacity to remove and inactivate viruses. We conclude that the theoretical risks arising from manufacturing seasonal influenza vaccine using MDCK-33016PF cells are reduced to levels that are effectively zero by the multiple, orthogonal processes used during production.  相似文献   

11.
Gluconobacter oxydans has a lower biomass yield. Uniform design (UD) was applied to determine the optimum composition of the critical media and their mutual interactions for increased biomass yield of Gluconobacter oxydans DSM 2003 in shake flasks. Fed-batch fermentation process for biomass was optimized in a 3.7-l fermentor. By undertaking a preliminary and improved fed-batch fermentation-process strategy, a cell density of 6.0 g/l (DCW) was achieved in 22 h and 14.1 g/l (DCW) in 35 h, which is the highest cell density of G. oxydans produced thus far in a 3.7-l bioreactor. The biomass production was increased by 135% compared with that using the original cultivation strategy. Bioconversion of ethylene glycol to glycolic acid was catalyzed by the resting cells of G. oxydans DSM 2003, and conversion rate reached 86.7% in 48 h. In summary, the approach including high-density fermentation of G. oxydans DSM 2003 and bioconversion process was established and proved to be an effective method for glycolic acid production.  相似文献   

12.
《Process Biochemistry》2014,49(3):365-373
A three-stage control strategy independent of the organic substrate was developed for automated substrate feeding in a two-phase fed-batch culture of Cupriavidus necator DSM 545 for the production of the biopolymer polyhydroxybutyrate (PHB). The optimal feeding strategy was determined using glucose as the substrate. A combined substrate feeding strategy consisting of exponential feeding and a novel method based on alkali-addition monitoring resulted in a maximal cell concentration in the biomass growth phase. In the PHB accumulation phase, a constant substrate feeding strategy based on the estimated amount of biomass produced in the first phase and a specific PHB accumulation rate was implemented to induce PHB under limiting nitrogen at different biomass concentrations. Maximal cell and PHB concentrations of 164 and 125 g/L were obtained when nitrogen feeding was stopped at 56 g/L of residual biomass; the glucose concentration was maintained within its optimal range. The developed feeding strategy was validated using waste glycerol as the sole carbon source for PHB production, and the three-stage control strategy resulted in a PHB concentration of 65.6 g/L and PHB content of 62.7% while keeping the glycerol concentration constant. It can thus be concluded that the developed feeding strategy is sensitive, robust, inexpensive, and applicable to fed-batch culture for PHB production independent of the carbon source.  相似文献   

13.
14.
Vaccination is one of the most successful public health interventions being a cost‐effective tool in preventing deaths among young children. The earliest vaccines were developed following empirical methods, creating vaccines by trial and error. New process development tools, for example mathematical modeling, as well as new regulatory initiatives requiring better understanding of both the product and the process are being applied to well‐characterized biopharmaceuticals (for example recombinant proteins). The vaccine industry is still running behind in comparison to these industries. A production process for a new Haemophilus influenzae type b (Hib) conjugate vaccine, including related quality control (QC) tests, was developed and transferred to a number of emerging vaccine manufacturers. This contributed to a sustainable global supply of affordable Hib conjugate vaccines, as illustrated by the market launch of the first Hib vaccine based on this technology in 2007 and concomitant price reduction of Hib vaccines. This paper describes the development approach followed for this Hib conjugate vaccine as well as the mathematical modeling tool applied recently in order to indicate options for further improvements of the initial Hib process. The strategy followed during the process development of this Hib conjugate vaccine was a targeted and integrated approach based on prior knowledge and experience with similar products using multi‐disciplinary expertise. Mathematical modeling was used to develop a predictive model for the initial Hib process (the ‘baseline’ model) as well as an ‘optimized’ model, by proposing a number of process changes which could lead to further reduction in price. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:568–580, 2016  相似文献   

15.
The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory perspective, Quality by Design (QbD) and Process Analytical Technology (PAT) are important initiatives that can be applied effectively to many types of vaccine processes. Universal demand for vaccines requires that a manufacturer plan to supply tens and sometimes hundreds of millions of doses per year at low cost. To enable broader use, there is intense interest in improving temperature stability to allow for excursions from a rigid cold chain supply, especially at the point of vaccination. Finally, there is progress in novel routes of delivery to move away from the traditional intramuscular injection by syringe approach.  相似文献   

16.
Vaccination is one of the most effective preventive measures to combat influenza. Prospectively, cell culture-based influenza vaccines play an important role for robust vaccine production in both normal settings and urgent situations, such as during the 2009 pandemic. African green monkey Vero cells are recommended by the World Health Organization as a safe substrate for influenza vaccine production for human use. However, the growth of influenza vaccine seed viruses is occasionally suboptimal in Vero cells, which places limitations on their usefulness for enhanced vaccine production. Here, we present a strategy for the development of vaccine seed viruses with enhanced growth in Vero cells by changing an amino acid residue in the stem region of the HA2 subunit of the hemagglutinin (HA) molecule. This mutation optimized the pH for HA-mediated membrane fusion in Vero cells and enhanced virus growth 100 to 1,000 times in the cell line, providing a promising strategy for cell culture-based influenza vaccines.  相似文献   

17.
Experimental human pneumococcal carriage models for vaccine research   总被引:1,自引:0,他引:1  
Pneumococcal conjugate vaccines have had unprecedented success in controlling vaccine-type invasive pneumococcal disease. As serotype replacement and the complexity of designing vaccines to multiple capsular polysaccharides ultimately pose a threat to these vaccines, the development of alternative protein vaccines is important. Protein vaccines offer the promise of extended serotype coverage, reduced cost, and improved protection against otitis media and pneumococcal pneumonia. As placebo-controlled trials are not currently ethically justifiable, human pneumococcal challenge models using prevention of carriage as a test endpoint offer an attractive link between preclinical studies and clinical efficacy trials. Experimental human pneumococcal carriage studies offer a means of describing mechanisms of protection against carriage and a clinical tool to choose between vaccine candidates.  相似文献   

18.
Pneumococcal surface protein A (PspA) is essential for Streptococcus pneumoniae virulence and its use either as a novel pneumococcal vaccine or as carrier in a conjugate vaccine would improve the protection and the coverage of the vaccine. Within this context, the development of scalable production and purification processes of His-tagged recombinant fragment of PspA from clade 3 (rfPspA3) in Escherichia coli BL21(DE3) was proposed. Fed-batch production was performed using chemically defined medium with glucose or glycerol as carbon source. Although the use of glycerol led to lower acetate production, the concentration of cells were similar at the end of both fed-batches, reaching high cell density of E. coli (62 g dry cell weight/L), and the rfPspA3 production was higher with glucose (3.48 g/L) than with glycerol (2.97 g/L). A study of downstream process was also carried out, including cell disruption and clarification steps. Normally, the first chromatography step for purification of His-tagged proteins is metal affinity. However, the purification design using anion exchange followed by metal affinity gave better results for rfPspA3 than the opposite sequence. Performing this new design of chromatography steps, rfPspA3 was obtained with 95.5% and 75.9% purity, respectively, from glucose and glycerol culture. Finally, after cation exchange chromatography, rfPspA3 purity reached 96.5% and 90.6%, respectively, from glucose and glycerol culture, and the protein was shown to have the expected alpha-helix secondary structure.  相似文献   

19.
The 7-valent polysaccharide conjugate vaccine currently administered against Streptococcus pneumoniae has been shown to be highly effective in high risk-groups, but its use in developing countries will probably not be possible due to high costs. The use of conserved protein antigens using the genetic vaccination strategy is an interesting alternative for the development of a cost-effective vaccine. We have analyzed the potential of DNA vaccines expressing genetically detoxified derivatives of pneumolysin (pneumolysoids) against pneumococcal infections, and compared this with immunization using recombinant protein. The purified recombinant pneumolysoid with the highest residual cytolytic activity was able to confer partial protection against a lethal intraperitoneal challenge, with the induction of high antibody levels. Immunization with DNA vaccines expressing pneumolysoids, on the other hand, induced a significantly lower antibody response and no protection was observed.  相似文献   

20.
Pneumococcal Virulence Factors: Structure and Function   总被引:22,自引:0,他引:22       下载免费PDF全文
The overall goal for this review is to summarize the current body of knowledge about the structure and function of major known antigens of Streptococcus pneumoniae, a major gram-positive bacterial pathogen of humans. This information is then related to the role of these proteins in pneumococcal pathogenesis and in the development of new vaccines and/or other antimicrobial agents. S. pneumoniae is the most common cause of fatal community-acquired pneumonia in the elderly and is also one of the most common causes of middle ear infections and meningitis in children. The present vaccine for the pneumococcus consists of a mixture of 23 different capsular polysaccharides. While this vaccine is very effective in young adults, who are normally at low risk of serious disease, it is only about 60% effective in the elderly. In children younger than 2 years the vaccine is ineffective and is not recommended due to the inability of this age group to mount an antibody response to the pneumococcal polysaccharides. Antimicrobial drugs such as penicillin have diminished the risk from pneumococcal disease. Several pneumococcal proteins including pneumococcal surface proteins A and C, hyaluronate lyase, pneumolysin, autolysin, pneumococcal surface antigen A, choline binding protein A, and two neuraminidase enzymes are being investigated as potential vaccine or drug targets. Essentially all of these antigens have been or are being investigated on a structural level in addition to being characterized biochemically. Recently, three-dimensional structures for hyaluronate lyase and pneumococcal surface antigen A became available from X-ray crystallography determinations. Also, modeling studies based on biophysical measurements provided more information about the structures of pneumolysin and pneumococcal surface protein A. Structural and biochemical studies of these pneumococcal virulence factors have facilitated the development of novel antibiotics or protein antigen-based vaccines as an alternative to polysaccharide-based vaccines for the treatment of pneumococcal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号