共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The order Anguilliformes forms a natural group of eel-like species. Moringua edwardsi (Moringuidae) is of special interest because of its peculiar fossorial lifestyle: this species burrows head-first. Externally pronounced morphological specializations for a fossorial lifestyle include: reduced eyes, lack of color, low or absent paired vertical fins, elongated, cylindrical body, reduced head pores of the lateral line system, etc. Many fossorial amphibians, reptiles, and even mammals have evolved similar external specializations related to burrowing. The present study focuses on osteological and myological features of M. edwardsi in order to evaluate the structural modifications that may have evolved as adaptations to burrowing. Convergent evolutionary structures and possible relations with head-first burrowing, miniaturization, feeding habits, etc., were investigated. Body elongation, reduction of the eyes, modified cranial lateral line system, and modified skull shape (pointed though firm) can be considered specializations for head-first burrowing. Hyperossification can probably be regarded more as a specialization to both head-first burrowing and feeding, even though an impact of miniaturization cannot be excluded. Hypertrophied adductor mandibulae muscles and the enlarged coronoid process can be associated with both feeding requirements (it enhances bite forces necessary for their predatory behavior) and with a burrowing lifestyle, as well as miniaturization. 相似文献
4.
5.
The Ceprano calvarium represents one of the most important sources of information about both the dynamics of the earliest hominid dispersal toward Europe and the evolution of the genus Homo in the early-to-middle Pleistocene. In this paper, the midsagittal vault profile and the 3D frontal bone morphology of Ceprano are investigated comparatively, using landmark coordinates and Procrustes superimposition. In fact, despite the fact that the skull appears partially distorted by diagenetic pressures (thus precluding a comprehensive landmark-based analysis), some aspects of the overall morphology are suitable for consideration in terms of geometric morphometrics. The midsagittal profile shows an archaic shape, comparable with the H. ergaster/erectus range of variation because of the fronto-parietal flattening, the development of the supraorbital and nuchal structures, and the occurrence of a slightly larger occipital bone. By contrast, the frontal bone displays a derived 3D shape that, mostly because of the widening of the frontal squama, appears comparable with the Afro-European variation of the Middle Pleistocene (i.e., H. heidelbergensis/rhodesiensis). Taking into account the unique morphological pattern displayed by Ceprano, its role as a link between early Homo and the Middle Pleistocene populations of Europe and Africa is not falsified. Thus, when aspects of the Ceprano's morphology are described within the analytical framework provided by geometric morphometrics, the relationships between Ceprano and the subsequent Afro-European fossil record are emphasized, suggesting the occurrence of an ancestral stock of H. heidelbergensis/rhodesiensis that is properly represented by the Italian specimen. 相似文献
6.
7.
8.
Karen L. Baab Sarah E. Freidline Steven L. Wang Timothy Hanson 《American journal of physical anthropology》2010,141(1):97-115
Variation in cranial robusticity among modern human populations is widely acknowledged but not well‐understood. While the use of “robust” cranial traits in hominin systematics and phylogeny suggests that these characters are strongly heritable, this hypothesis has not been tested. Alternatively, cranial robusticity may be a response to differences in diet/mastication or it may be an adaptation to cold, harsh environments. This study quantifies the distribution of cranial robusticity in 14 geographically widespread human populations, and correlates this variation with climatic variables, neutral genetic distances, cranial size, and cranial shape. With the exception of the occipital torus region, all traits were positively correlated with each other, suggesting that they should not be treated as individual characters. While males are more robust than females within each of the populations, among the independent variables (cranial shape, size, climate, and neutral genetic distances), only shape is significantly correlated with inter‐population differences in robusticity. Two‐block partial least‐squares analysis was used to explore the relationship between cranial shape (captured by three‐dimensional landmark data) and robusticity across individuals. Weak support was found for the hypothesis that robusticity was related to mastication as the shape associated with greater robusticity was similar to that described for groups that ate harder‐to‐process diets. Specifically, crania with more prognathic faces, expanded glabellar and occipital regions, and (slightly) longer skulls were more robust than those with rounder vaults and more orthognathic faces. However, groups with more mechanically demanding diets (hunter‐gatherers) were not always more robust than groups practicing some form of agriculture. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
9.
10.
11.
A. F. Dixson 《International journal of primatology》1989,10(1):47-55
Variations in penile morphology among galago species are pronounced and complex. Comparative studies of galagos and other primate species show that elongation of the baculum (os penis)is associated with copulatory patterns involving a prolonged period of intromission. The enlarged penile “spines” of male galagos may be important in maintaining a genital “lock” during copulation. In primate species where females mate with a number of partners, sexual selection may have favored the rapid evolution of such features of penile morphology and masculine copulatory behavior. It is suggested that evolution of complex penile morphologies in galagos has been influenced by sexual selection and that such morphological variations are extremely useful in taxonomic studies. 相似文献
12.
Irven DeVore 《International journal of primatology》1990,11(1):1-5
Primate socioecology is being dramatically transformed as new studies are undertaken in Madagascar and the New World. Simultaneously, the incorporation of primate studies in a broader framework of theory in behavioral ecology promises to more intelligently inform anthropology's traditional concerns with primate and hominid evolution. 相似文献
13.
In order to study the differentiation of Asian colobines, fourteen variables were analysed in one way, on 123 skulls, includingRhinopithecus, Presbytis, Presbytiscus, Pygathrix, andNasalis with both cluster and differentiated functions tests. Information on paleoenvironment changes in China and South-East Asia
since late Tertiary have been used to examine the influences of migratory habits and the distribution range in Asian colobines.
The cladogram among different Asian colobines genera was made from the results of various analysis. Some new points or revisions
were suggested: 1. Following the second migratory way, ancient species of Asian colobines perhaps passed through Xizang along
the northern bank of Tethis sea and Heng-Duan Shan regions, across Yunnan into Vietnam, since the ancient continent between
Yunnan and Xizang was already located in on eastern bank of Tethis sea. Thus, during the evolution, Asian colobines must have
had two original centres, i.e. “Sundaland” and Heng-Duan Shan Chinese regions; 2. Pygatrix possesses a lot of cranial features
more similar toPresbytiscus than toRhinopithecus. The small difference from the modification combinesPygatrix with other two genera as shown by Groves (1970), but it is better to putPygatrix andPresbytiscus together as one genus; 3.Nasalis (2n=48) may be the most primitive genus within Asian colobines. Some features shared withRhinopithecus, for example body size, terrestrial activities, limb proportion etc. ...seem to be considered as a common inheritance of
symlesiomorphus characters; 4.Rhinopithecus, with reference to cranioface and cranium or to its origin, is a special genus of Asian colobine. It may represent the highest
level of evolutionary position within various genera (Peng et al., 1985). 相似文献
14.
The rice paddy eel, Pisodonophis boro (P. boro), is of special interest because of its peculiar burrowing habits. P. boro penetrates the substrate tail-first, a technique common for ophichthids, but it is able to burrow head-first as well. P. boro exhibits three feeding modes: inertial feeding, grasping, and spinning. Rotational feeding is a highly specialized feeding mode, adopted by several elongate, aquatic vertebrates and it is likely that some morphological modifications are related to this feeding mode. The detailed morphology of the head and tail of P. boro is examined with the goal to apportion the anatomical specializations among head-first burrowing, tail-first burrowing, and rotational feeding. The reduced eyes, covered with thick corneas may be beneficial for protection during head-first burrowing, but at the same time decreased visual acuity may have an impact on other sensory systems (e.g. cephalic lateral line system). The elongated and pointed shape of the skull is beneficial for substrate penetration. The cranial bones and their joints, which are fortified, are advantageous for resisting high mechanical loads during head-first burrowing. The aponeurotic connection between epaxial and jaw muscles is considered beneficial for transferring these forces from the body to the head during rotational feeding. Hypertrophied jaw muscles facilitate a powerful bite, which is required to hold prey during spinning movements and variability in the fiber angles of subdivisions of jaw muscles may be beneficial for preventing the lower jaw from being dislodged or opened. Furthermore, firm upper (premaxillo-ethmovomerine complex) and lower jaws (with robust coronoid processes) and high neurocranial rigidity are advantageous for a solid grip to hold prey during rotational feeding. The pointed shape of the tail and the consolidated caudal skeleton are beneficial for their tail-first burrowing habits. It is quite likely that the reduction of the caudal musculature is related to the tail-first burrowing behavior because the subtle movements of the caudal fin rays are no longer required. 相似文献
15.
Richard A. Lazenby 《American journal of physical anthropology》1998,106(2):157-167
Study of bone mass at the second metacarpal midshaft has contributed to our understanding of skeletal growth and aging within and between populations and has relied extensively on noninvasive techniques and in particular radiogrammetric data. This study reports age, sex, and side variation in size and shape data acquired from direct measurement of cross-sections obtained from a large (n = 356), homogeneous skeletal sample. Correlation analysis and three-way ANOVA of size-adjusted data confirm general impressions of patterned variation in this element: males have absolutely but not necessarily relatively larger bones than females; the right side is larger than the left, though a larger than expected proportion (approximately 25%) of left metacarpals exhibits greater values than the right; and bone mass but not strength (in males) declines with age. Contrary to the widely accepted assumption of circularity for this location, direct measurement of cross-sectional geometry confirms previous biplanar radiogrammetric conclusions regarding the noncircularity of the second metacarpal midshaft and identifies a significant difference between males and females, with the latter having a more cylindrical diaphysis. Deviation of the axes of maximum and minimum bending strength associated with noncircularity suggests a distribution of bone mass to resist bending moments perpendicular to the distal palmar arch, though this conclusion awaits more robust study of the functional anatomy of the metacarpal diaphysis. Am J Phys Anthropol 106:157–167, 1998. © 1998 Wiley-Liss, Inc. 相似文献
16.
17.
Dunn RH Sybalsky JM Conroy GC Rasmussen DT 《American journal of physical anthropology》2006,131(3):303-310
North American omomyids represent a tremendous Eocene radiation of primates exhibiting a wide range of body sizes and dietary patterns. Despite this adaptive diversity, relatively little is known of the postcranial specializations of the group. Here we describe hindlimb and foot bones of Ourayia uintensis and Chipetaia lamporea that were recovered from the Uinta B member (early Uintan Land Mammal Age), Uinta Formation, Utah. These specimens provide insights into the evolution of postcranial adaptations across different body sizes and dietary guilds within the Eocene primate radiation. Body mass estimates based on talar measurements indicate that Ourayia uintensis and Chipetaia lamporea weighed about 1,500-2,000 g and 500-700 g, respectively. Skeletal elements recovered for Ourayia include the talus, navicular, entocuneiform, first metatarsal, and proximal tibia; bones of Chipetaia include the talus, navicular, entocuneiform, and proximal femur. Both genera had opposable grasping big toes, as indicated by the saddle-shaped joint between the entocuneiform and first metatarsal. Both taxa were arboreal leapers, as indicated by a consistent assemblage of characters in all represented bones, most notably the somewhat elongated naviculars, the high and distinct trochlear crests of the talus, the posteriorly oriented tibial plateau (Ourayia), and the cylindrical head of the femur (Chipetaia). The closest resemblances to Ourayia and Chipetaia are found among the Bridger omomyines, Omomys and Hemiacodon. The results of our comparisons suggest that the later, larger, more herbivorous omomyines from Utah retained a skeletal structure characteristic of earlier, smaller North American omomyids. 相似文献
18.
19.
Robert S. Voss Leslie F. Marcus 《Evolution; international journal of organic evolution》1992,46(6):1918-1934
First principal components extracted from covariance matrices of log-transformed craniodental measurements closely approximate general size factors within field-collected samples representing 14 species in seven Neotropical muroid genera; because these samples are mixed-cross-sectional, scores are age-correlated and coefficients reflect postweaning growth allometries. Compared between congeners, sample first principal component coefficients are very similar, an observation that implies a nearly parallel orientation of ontogenetic trajectories in log-measurement space. On the assumption that a common general size factor (estimated as the first principal component of the pooled-within covariance matrix) accounts for most of the observed measurement covariance within samples, size-adjusted differences between congeneric species were estimated variable-by-variable in separate analyses of covariance; these differences reflect developmental adjustments of craniodental morphology that precede the measured interval of postweaning ontogeny. Vectors of size-adjusted difference coefficients are not similar from genus to genus, and a diversity of causal mechanisms is probably responsible. Analyses of captive-bred samples from two “species” of Zygodontomys provide prima facie evidence that size-adjusted differences estimated from field-collected samples have a genetic basis. Postweaning growth allometries in the muroid head skeleton may be conserved due to the biomechanical constraints of masticatory function; the apparent evolutionary plasticity of earlier ontogenetic adjustments may reflect the absence of such constraints in the fetus or suckling pup. The relevance of these results for current theories concerning the developmental genetics of mammalian morphometric evolution is discussed. 相似文献
20.
Herman Pontzer 《Evolutionary anthropology》2017,26(1):12-24
Biological diversity is metabolic diversity: Differences in anatomy, physiology, life history, and activity reflect differences in energy allocation and expenditure among traits and tasks. Traditional frameworks in primatology, human ecology, public health, and paleoanthropology view daily energy expenditure as being more variable within than between species, changing with activity level but essentially fixed for a given body size. Growing evidence turns this view on its head. Total energy expenditure (kcal/d), varies relatively little within species, despite variation in physical activity; it varies considerably among species even after controlling for the effect of body size. Embracing this emerging paradigm requires rethinking potential trade‐offs in energy allocation within and between species, assessing evidence of metabolic acceleration within lineages, and abandoning activity‐based estimates of total energy expenditure. Difficult and exciting work lies ahead in the effort to untangle the ecological and evolutionary pressures shaping primate metabolic diversity. 相似文献