首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature‐dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years.  相似文献   

2.
How will climate change affect species'' reproduction and subsequent survival? In many egg-laying reptiles, the sex of offspring is determined by the temperature experienced during a critical period of embryonic development (temperature-dependent sex determination, TSD). Increasing air temperatures are likely to skew offspring sex ratios in the absence of evolutionary or plastic adaptation, hence we urgently require means for predicting the future distributions of species with TSD. Here we develop a mechanistic model that demonstrates how climate, soil and topography interact with physiology and nesting behaviour to determine sex ratios of tuatara, cold-climate reptiles from New Zealand with an unusual developmental biology. Under extreme regional climate change, all-male clutches would hatch at 100% of current nest sites of the rarest species, Sphenodon guntheri, by the mid-2080s. We show that tuatara could behaviourally compensate for the male-biasing effects of warmer air temperatures by nesting later in the season or selecting shaded nest sites. Later nesting is, however, an unlikely response to global warming, as many oviparous species are nesting earlier as the climate warms. Our approach allows the assessment of the thermal suitability of current reserves and future translocation sites for tuatara, and can be readily modified to predict climatic impacts on any species with TSD.  相似文献   

3.
The study of temperature‐dependent sex determination (TSD) in vertebrates has attracted major scientific interest. Recently, concerns for species with TSD in a warming world have increased because imbalanced sex ratios could potentially threaten population viability. In contrast, relatively little attention has been given to the direct effects of increased temperatures on successful embryonic development. Using 6603 days of sand temperature data recorded across 6 years at a globally important loggerhead sea turtle rookery—the Cape Verde Islands—we show the effects of warming incubation temperatures on the survival of hatchlings in nests. Incorporating published data (n = 110 data points for three species across 12 sites globally), we show the generality of relationships between hatchling mortality and incubation temperature and hence the broad applicability of our findings to sea turtles in general. We use a mechanistic approach supplemented by empirical data to consider the linked effects of warming temperatures on hatchling output and on sex ratios for these species that exhibit TSD. Our results show that higher temperatures increase the natural growth rate of the population as more females are produced. As a result, we project that numbers of nests at this globally important site will increase by approximately 30% by the year 2100. However, as incubation temperatures near lethal levels, the natural growth rate of the population decreases and the long‐term survival of this turtle population is threatened. Our results highlight concerns for species with TSD in a warming world and underline the need for research to extend from a focus on temperature‐dependent sex determination to a focus on temperature‐linked hatchling mortalities.  相似文献   

4.
Temperature and the life-history strategies of sea turtles   总被引:1,自引:0,他引:1  
1. 1. Sea turtles have a high fecundity, high mortality, great longevity life history strategy.
2. 2. With the exception of the leatherback, turtle distribution is constrained by the 20°C surface isotherm.
3. 3. All sea turtles exhibit temperature-dependent sex determination (TSD) with pivotal temperatures close to 29°C.
4. 4. It is suggested that hatchling sex ratio will vary chaotically because of TSD.
5. 5. Because of TSD and natal homing, sea turtles are likely to be adversely affected by global warming.
6. 6. TSD and global warming have implications for conservation/management of sea turtles.
  相似文献   

5.
At present, most turtles, all crocodilians, and several lizards are known to have temperature-dependent sex determination (TSD). Due to the dependence of sex determination on incubation temperature, the long-term survival of TSD species may be jeopardized by global climate changes. The current study was designed to assess the degree to which this concern is justified by examining nest-site selection in two species of Pattern II TSD geckos (Eublepharis macularius and Hemitheconyx caudicinctus) and comparing these preferences with those of a species with genotypic sex determination (GSD) (Coleonyx mitratus). Temperature preferences for nest sites were found to be both species-specific and female-specific. While H. caudicinctus females selected a mean nest-site temperature (32.4°) very close to the upper pivotal temperature (32°C) for the species, E. macularius females selected a mean nest-site temperature (28.7°C) well below this species' lower pivotal temperature (30.5°C). Thus, the resultant sex ratios are expected to differ between these two TSD species. Additionally, nest-site temperatures for the GSD species were significantly more variable (SE=+0.37) than were temperatures for either of the TSD species (E. macularius SE=±0.10; H. caudicinctus SE =+ 0.17), diereby further demonstrating temperature preferences within the TSD species.  相似文献   

6.
Temperature-dependent sex determination (TSD) has evolved independently in at least two lineages of viviparous Australian scincid lizards, but its adaptive significance remains unclear. We studied a montane lizard species (Eulamprus heatwolei) with TSD. Our data suggest that mothers can modify the body sizes of their offspring by selecting specific thermal regimes during pregnancy (mothers with higher and more stable temperatures produced smaller offspring), but cannot influence sons versus daughters differentially in this way. A field mark-recapture study shows that optimal offspring size differs between the sexes: larger body size at birth enhanced the survival of sons but reduced the survival of daughters. Thus, a pregnant female can optimize the fitness of either her sons or her daughters (via yolk allocation and thermoregulation), but cannot simultaneously optimize both. One evolutionary solution to reduce this fitness cost is to modify the sex-determining mechanism so that a single litter consists entirely of either sons or daughters; TSD provides such a mechanism. Previous work has implicated a sex difference in optimal offspring size as a selective force for TSD in turtles. Hence, opposing fitness determinants of sons and daughters may have favored evolutionary transitions from genetic sex determination to TSD in both oviparous turtles and viviparous lizards.  相似文献   

7.
Abstract Why is the sex of many reptiles determined by the temperatures that these animals experience during embryogenesis, rather than by their genes? The Charnov‐Bull model suggests that temperature‐dependent sex determination (TSD) can enhance maternal fitness relative to genotypic sex determination (GSD) if offspring traits affect fitness differently for sons versus daughters and nest temperatures either determine or predict those offspring traits. Although potential pathways for such effects have attracted much speculation, empirical tests largely have been precluded by logistical constraints (i.e., long life spans and late maturation of most TSD reptiles). We experimentally tested four differential fitness models within the Charnov‐Bull framework, using a short‐lived, early‐maturing Australian lizard (Amphibolurus muricatus) with TSD. Eggs from wild‐caught females were incubated at a range of thermal regimes, and the resultant hatchlings raised in large outdoor enclosures. We applied an aromatase inhibitor to half the eggs to override thermal effects on sex determination, thus decoupling sex and incubation temperature. Based on relationships between incubation temperatures, hatching dates, morphology, growth, and survival of hatchlings in their first season, we were able to reject three of the four differential fitness models. First, matching offspring sex to egg size was not plausible because the relationship between egg (offspring) size and fitness was similar in the two sexes. Second, sex differences in optimal incubation temperatures were not evident, because (1) although incubation temperature influenced offspring phenotypes and growth, it did so in similar ways in sons versus daughters, and (2) the relationship between phenotypic traits and fitness was similar in the two sexes, at least during preadult life. We were unable to reject a fourth model, in which TSD enhances offspring fitness by generating seasonal shifts in offspring sex ratio: that is, TSD allows overproduction of daughters (the sex likely to benefit most from early hatching) early in the nesting season. In keeping with this model, hatching early in the season massively enhanced body size at the beginning of the first winter, albeit with a significant decline in probability of survival. Thus, the timing of hatching is likely to influence reproductive success in this short‐lived, early maturing species; and this effect may well differ between the sexes.  相似文献   

8.
For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle (Chelonia mydas), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2-4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened.  相似文献   

9.
An individual's sex depends upon its genes (genotypic sex determination or GSD) in birds and mammals, but reptiles are more complex: some species have GSD whereas in others, nest temperatures determine offspring sex (temperature-dependent sex determination). Previous studies suggested that montane scincid lizards (Bassiana duperreyi, Scincidae) possess both of these systems simultaneously: offspring sex is determined by heteromorphic sex chromosomes (XX-XY system) in most natural nests, but sex ratio shifts suggest that temperatures override chromosomal sex in cool nests to generate phenotypically male offspring even from XX eggs. We now provide direct evidence that incubation temperatures can sex-reverse genotypically female offspring, using a DNA sex marker. Application of exogenous hormone to eggs also can sex-reverse offspring (oestradiol application produces XY as well as XX females). In conjunction with recent work on a distantly related lizard taxon, our study challenges the notion of a fundamental dichotomy between genetic and thermally determined sex determination, and hence the validity of current classification schemes for sex-determining systems in reptiles.  相似文献   

10.
Theoretical models identify maternal behavior as critical for the maintenance and evolution of sex ratios in organisms with environmental sex determination (ESD). Maternal choice of nest site is generally thought to respond more rapidly to sex ratio selection than environmental sensitivity of offspring sex (threshold temperatures) in reptiles with temperature-dependent sex determination (TSD, a form of ESD). However, knowledge of the evolutionary potential for either of these traits in a field setting is limited. I developed a simulation model using local climate data and observed levels of phenotypic variation for nest-site choice and threshold temperatures in painted turtles (Chrysemys picta) with TSD. Both nest-site choice and threshold temperatures, and hence sex ratios, evolved slowly to simulated climate change scenarios. In contrast to expectations from previous models, nest-site choice evolved more slowly than threshold temperatures because of large climatic effects on nest temperatures and indirect selection on maternally expressed traits. A variant of the model, assuming inheritance of nest-site choice through natal imprinting, demonstrated that natal imprinting inhibited adaptive responses in female nest-site choice to climate change. These results predict that females have relatively low potential to adaptively adjust sex ratios through nest-site choice.  相似文献   

11.
Sex-determining mechanisms in reptiles can be divided into two convenient classifications: genotypic (GSD) and environmental (ESD). While a number of types of GSD have been identified in a wide variety of reptilian taxa, the expression of ESD in the form of temperature-dependent sex determination (TSD) in three of the five major reptilian lineages has drawn considerable attention to this area of research. Increasing interest in sex-determining mechanisms in reptiles has resulted in many data, but much of this information is scattered throughout the literature and consequently difficult to interpret. It is known, however, that distinct sex chromosomes are absent in the tuatara and crocodilians, rare in amphisbaenians (worm lizards) and turtles, and common in lizards and snakes (but less than 20% of all species of living reptiles have been karyotyped). With less than 2 percent of all reptilian species examined, TSD apparently is absent in the tuatara, amphisbaenians and snakes; rare in lizards, frequent in turtles, and ubiquitous in crocodilians. Despite considerable inter- and intraspecific variation in the threshold temperature (temperature producing a 1:1 sex ratio) of gonadal sex determination, this variation cannot confidently be assigned a genetic basis owing to uncontrolled environmental factors or to differences in experimental protocol among studies. Laboratory studies have identified the critical period of development during which gonadal sex determination occurs for at least a dozen species. There are striking similarities in this period among the major taxa with TSD. Examination of TSD in the field indicates that sex ratios of hatchlings are affected by location of the nests, because some nests produce both sexes whereas the majority produce only one sex. Still, more information is needed on how TSD operates under natural conditions in order to fully understand its ecological and conservation implications. TSD may be the ancestral sex-determining condition in reptiles, but this result remains tentative. Physiological investigations of TSD have clarified the roles of steroid hormones, various enzymes, and H-Y antigen in sexual differentiation, whereas molecular studies have identified several plausible candidates for sex-determining genes in species with TSD. This area of research promises to elucidate the mechanism of TSD in reptiles and will have obvious implications for understanding the basis of sex determination in other vertebrates. Experimental and comparative investigations of the potential adaptive significance of TSD appear equally promising, although much work remains to be performed. The distribution of TSD within and among the major reptilian lineages may be related to the life span of individuals of a species and to the biogeography of these species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Sex‐determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex‐determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature‐dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco‐evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management programs.  相似文献   

13.
In many egg-laying reptiles, the incubation temperature of the egg determines the sex of the offspring, a process known as temperature-dependent sex determination (TSD). In TSD sex determination is an “all or none” process and intersexes are rarely formed. How is the external signal of temperature transduced into a genetic signal that determines gonadal sex and channels sexual development? Studies with the red-eared slider turtle have focused on the physiological, biochemical, and molecular cascades initiated by the temperature signal. Both male and female development are active processes—rather than the crganized/default system characteristic of vertebrates with genotypic sex determination—that require simultaneous activation and suppression of testis- and ovary-determining cascades for normal sex determination. It appears that temperature accomplishes this end by acting on genes encoaing for steroidogenic enzymes and steroid hormone receptors and modifying the endocrine microenvironment in the embryo. The temperature experienced in development also has long-term functional outcomes in addition to sex determination. Research with the leopard gecko indicates that incubation temperature as well as steroid hormones serve as organizers in shaping the adult phenotype, with temperature modulating sex hormone action in sexual differentiation. Finally, practical applications of this research have emerged for the conservation and restoration of endangered egg-laying reptiles as well as the embryonic development of reptiles as biomarkers to monitor the estrogenic effects of common environmental contaminants. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Selection is expected to maintain primary sex ratios at an evolutionary equilibrium. In organisms with temperature-dependent sex determination (TSD), targets of sex-ratio selection include the thermal sensitivity of the sex-determining pathway (hereafter, sex determination threshold) and nest-site choice. However, offspring sex may be canalized for nests located in thermally extreme environments; thus, genetic variance for the sex determination threshold is not expressed and is invisible to direct selection. The concept of 'effective heritability' accounts for this dependence and provides a more realistic prediction of the expected evolutionary response to selection in the wild. Past estimates of effective heritability of the sex determination threshold, which were derived from laboratory data, suggested that the potential for the sex determination threshold to evolve in the wild was extremely low. We re-evaluated original estimates of this parameter by analysing field-collected measures of nest temperatures, vegetation cover and clutch sex ratios from nests in a population of painted turtles (Chrysemys picta). We coupled these data with measurements of broad-sense heritability of the sex determination threshold in C. picta, using an experiment that splits clutches of eggs between a constant temperature (i.e. typical laboratory incubation) and a daily fluctuating temperature (i.e. similar to natural nests) with the same mean. We found that (i) the effective heritability of the sex determination threshold appears to have been historically underestimated and the effective heritability of nest-site choice has been overestimated and (ii) significant family-by-incubation treatment interaction exists for sex for C. picta between constant- and fluctuating-temperature regimes. Our results suggest that the thermal sensitivity of the sex-determining pathway may play a larger, more complex role in the microevolution of TSD than traditionally thought.  相似文献   

15.
16.
Squamate reptiles possess two general modes of sex determination: (1) genotypic sex determination (GSD), where the sex of an individual is determined by sex chromosomes, i.e. by sex‐specific differences in genotype; and (2) temperature‐dependent sex determination (TSD), where sex chromosomes are absent and sex is determined by nongenetic factors. After gathering information about sex‐determining mechanisms for more than 400 species, we employed comparative phylogenetic analyses to reconstruct the evolution of sex determination in Squamata. Our results suggest relative uniformity in sex‐determining mechanisms in the majority of the squamate lineages. Well‐documented variability is found only in dragon lizards (Agamidae) and geckos (Gekkota). Polarity of the sex‐determining mechanisms in outgroups identified TSD as the ancestral mode for Squamata. After extensive review of the literature, we concluded that to date there is no known well‐documented transition from GSD to TSD in reptiles, although transitions in the opposite direction are plentiful and well corroborated by cytogenetic evidence. We postulate that the evolution of sex‐determining mechanisms in Squamata was probably restricted to the transitions from ancestral TSD to GSD. In other words, transitions were from the absence of sex chromosomes to the emergence of sex chromosomes, which have never disappeared and constitute an evolutionary trap. This evolutionary trap hypothesis could change the understanding of phylogenetic conservatism of sex‐determining systems in many large clades such as butterflies, snakes, birds, and mammals. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 168–183.  相似文献   

17.
In several species of short-lived Australian agamid lizards, an individual’s sex is determined by the nest temperatures encountered during incubation. The adaptive significance of such systems remains unclear. Here, we explore the hypothesis that (1) the optimal timing of hatching differs between the sexes, and thus (2) temperature-dependent sex determination (TSD) enhances maternal and offspring fitness by generating seasonal shifts in offspring sex ratios. Our model predicts that TSD can indeed enhance maternal fitness returns in short-lived lizards if (1) male–male competition is intense, thus reducing mating success of newly-matured males (but not females), and (2) the nesting season is prolonged, such that seasonal effects become significant. Available data on the distribution of TSD in Australian agamid lizards broadly support these predictions. Because both the level of male–male competition and the length of nesting season can vary at small spatial and temporal scales, selective forces on sex-determining mechanisms also should vary. Hence, our model predicts extensive small-scale (intraspecific) variation in sex-determining systems within agamid lizards, as well as among species.  相似文献   

18.
Environmental sex determination has been documented in a variety of organisms for many decades and the adaptive significance of this unusual sex-determining mechanism has been clarified empirically in most cases. In contrast, temperature-dependent sex determination (TSD) in amniote vertebrates, first noted 40 years ago in a lizard, has defied a general satisfactory evolutionary explanation despite considerable research effort. After briefly reviewing relevant theory and prior empirical work, we draw attention to recent comparative analyses that illuminate the evolutionary history of TSD in amniote vertebrates and point to clear avenues for future research on this challenging topic. To that end, we then highlight the latest empirical findings in lizards and turtles, as well as promising experimental results from a model organism, that portend an exciting future of progress in finally elucidating the evolutionary cause(s) and significance of TSD.  相似文献   

19.
Under certain environmental situations, selection may favour the ability of females to adjust the sex ratio of their offspring. Two recent studies have suggested that viviparous scincid lizards can modify the sex ratio of the offspring they produce in response to the operational sex ratio (OSR). Both of the species in question belong to genera that have also recently been shown to exhibit temperature-dependent sex determination (TSD). Here we test whether pregnant montane water skinks (Eulamprus tympanum) utilise TSD to select offspring sex in response to population wide imbalances in the OSR, by means of active thermoregulation. We use a combination of laboratory and field-based experiments, and conduct the first field-based test of this hypothesis by maintaining females in outdoor enclosures of varying OSR treatments throughout pregnancy. Although maternal body temperature during pregnancy was influenced by OSR, the variation in temperature was not great enough to affect litter sex ratios or any other phenotypic traits of the offspring.  相似文献   

20.
Under temperature-dependent sex determination (TSD), temperatures experienced by embryos during development determine the sex of the offspring. Consequently, populations of organisms with TSD have the potential to be strongly impacted by climatic warming that could bias offspring sex ratio, a fundamental demographic parameter involved in population dynamics. Moreover, many taxa with TSD are imperiled, so research on this phenomenon, particularly long-term field study, has assumed great urgency. Recently, turtles with TSD have joined the diverse list of taxa that have demonstrated population-level changes in breeding phenology in response to recent climate change. This raises the possibility that any adverse impacts of climate change on populations may be alleviated by individual plasticity in nesting phenology. Here, we examine data from a long-term study on a population of painted turtles (Chrysemys picta) to determine whether changes in phenology are due to individual plasticity and whether individual plasticity in the timing of nesting has the capacity to offset the sex ratio effects of a rise in climatic temperature. We find that individual females show plasticity in the date of first nesting each year, and that this plasticity depends on the climate from the previous winter. First nesting date is not repeatable within individuals, suggesting that it would not respond to selection. Sex ratios of hatchlings within a nest declined nonsignificantly over the nesting season. However, small increases in summer temperature had a much stronger effect on nest sex ratios than did laying nests earlier in the season. For this and other reasons, it seems unlikely that individual plasticity in the timing of nesting will offset the effects of climate change on sex ratios in this population, and we hypothesize that this conclusion applies to other populations with TSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号