首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have demonstrated that continuous countercurrent tangential chromatography (CCTC) can effectively purify monoclonal antibodies from clarified cell culture fluid. CCTC has the potential to overcome many of the limitations of conventional packed bed protein A chromatography. This paper explores the optimization of CCTC in terms of product yield, impurity removal, overall productivity, and buffer usage. Modeling was based on data from bench‐scale process development and CCTC experiments for protein A capture of two clarified Chinese Hamster Ovary cell culture feedstocks containing monoclonal antibodies provided by industrial partners. The impact of resin binding capacity and kinetics, as well as staging strategy and buffer recycling, was assessed. It was found that optimal staging in the binding step provides better yield and increases overall system productivity by 8–16%. Utilization of higher number of stages in the wash and elution steps can lead to significant decreases in buffer usage (~40% reduction) as well as increased removal of impurities (~2 log greater removal). Further reductions in buffer usage can be obtained by recycling of buffer in the wash and regeneration steps (~35%). Preliminary results with smaller particle size resins show that the productivity of the CCTC system can be increased by 2.5‐fold up to 190 g of mAb/L of resin/hr due to the reduction in mass transfer limitations in the binding step. These results provide a solid framework for designing and optimizing CCTC technology for capture applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:430–439, 2016  相似文献   

2.
Membrane chromatography has been established as a viable alternative to packed-bed column chromatography for the purification of therapeutic proteins. Purification via membrane chromatography offers key advantages, including higher productivity and reduced buffer usage. Unlike column chromatography purification, the utilization of high-throughput screening in order to reduce development times and material requirements has been a challenge for membrane chromatography. This research focused on the development of a new, high-throughput screening technique for use in screening membrane chromatography conditions for monoclonal antibody purification. The developed screen utilizes a 96-well plate format, thereby allowing for the screening of multiple different membrane conditions at once. For this study, four mixed-mode cation exchange membranes and one cation exchange membrane were evaluated on the plate. The screen is performed in a similar manner to that of a resin slurry plate screen, however, instead of a single loading step, the antibody feed was loaded in 50 mg/ml increments up to a maximum loading of 450 mg/ml. Performing a similar, incremental loading on a resin plate would be impractical, as mixing times are substantially longer due to pore diffusion limitations. However, due to the significantly faster rate of mass transfer for membranes relative to resin, mixing times could be reduced by up to a factor of sixty on the membrane plate. Additional optimization showed that higher hydrophobicity can potentially lead to slower kinetics and mixing times that may need to be adjusted accordingly. The end result is a screen that has been proven to provide results comparable to those obtained on larger-scale membrane purification runs while also enabling exploration of a much greater operating space and significantly reducing the feed materials required.  相似文献   

3.
There is growing interest within the biopharmaceutical industry to improve manufacturing efficiency through process intensification, with the goal of generating more product in less time with smaller equipment. In monoclonal antibody (mAb) purification, a unit operation that can benefit from intensification is anion exchange (AEX) polishing chromatography. Single-pass tangential flow filtration (SPTFF) technology offers an opportunity for process intensification by reducing intermediate pool volumes and increasing product concentration without recirculation. This study evaluated the performance of an AEX resin, both in terms of host cell protein (HCP) purification and viral clearance, following concentration of a mAb feed using SPTFF. Results show that preconcentration of AEX feed material improved isotherm conditions for HCP binding, resulting in a fourfold increase in resin mAb loading at the target HCP clearance level. Excellent clearance of minute virus of mouse and xenotropic murine virus was maintained at this higher load level. The increased mAb loading enabled by SPTFF preconcentration effectively reduced AEX column volume and buffer requirements, shrinking the overall size of the polishing step. In addition, the suitability of SPTFF for extended processing time operation was demonstrated, indicating that this approach can be implemented for continuous biomanufacturing. The combination of SPTFF concentration and AEX chromatography for an intensified mAb polishing step which improves both manufacturing flexibility and process productivity is supported.  相似文献   

4.
Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.  相似文献   

5.
Downstream processing of mAb charge variants is difficult owing to their similar molecular structures and surface charge properties. This study aimed to apply a novel twin‐column continuous chromatography (called N‐rich mode) to separate and enrich acidic variants of an IgG1 mAb. Besides, a comparison study with traditional scaled‐up batch‐mode cation exchange (CEX) chromatography was conducted. For the N‐rich process, two 3.93 mL columns were used, and the buffer system, flow rate and elution gradient slope were optimized. The results showed that 1.33 mg acidic variants with nearly 100% purity could be attained after a 22‐cycle accumulation. The yield was 86.21% with the productivity of 7.82 mg/L/h. On the other hand, for the batch CEX process, 4.15 mL column was first used to optimize the separation conditions, and then a scaled‐up column of 88.20 mL was used to separate 1.19 mg acidic variants with the purity of nearly 100%. The yield was 59.18% with the productivity of 7.78 mg/L/h. By comparing between the N‐rich and scaled‐up CEX processes, the results indicated that the N‐rich method displays a remarkable advantage on the product yield, i.e. 1.46‐fold increment without the loss of productivity and purity. Generally, twin‐column N‐rich continuous chromatography displays a high potential to enrich minor compounds with a higher yield, more flexibility and lower resin cost.  相似文献   

6.
Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:974–982, 2015  相似文献   

7.
The transport and binding properties of a novel hybrid particle-nonwoven membrane medium are described. In this construct, a polymeric chromatographic resin is entrapped between two layers of a nonwoven polypropylene membrane. The membrane-supported resin medium offers the advantage of increased interstitial pore diameter to allow passage of cells and other debris in the feed, while providing sufficiently high surface area for product capture within the resin particles. Columns packed with PIM displayed excellent flow distribution and had interstitial porosities of 0.48 ± 0.01, 25-60% larger than those typical of a packed bed. These columns were able to pass over 95% of E. coli cells and human red blood cell concentrate in 30 column volumes while maintaining a pressure drop significantly lower than that of a packed bed with a similar amount of resin. The dynamic binding capacity of bovine serum albumin (BSA) to the chromatographic resin entrapped in the PIM packed column was essentially the same as that observed with the same volume of resin in a packed bed. The General Rate (GR) model of chromatography was used to analyze experiments indicating the breakthrough behavior of the PIM columns is predictable, and very similar to those of a normal packed bed. These results suggest that PIM constructs can be designed to process viscous mobile phases containing particulates while retaining the desirable binding characteristics of the embedded chromatographic resin and could find uses in adsorption separation processes from complex feed streams such as whole blood, cell culture, and food processing.  相似文献   

8.
Purification of peptides typically includes expensive reverse phase (RP) processes, which utilize high pressure and large volumes of solvent. For two conjugated peptides, chromatography process development targeted a low-pressure aqueous process that could achieve target product purities of ≥95%, comparable to purities seen with traditional RP. A high throughput screening approach of different modalities was used to identify binding and elution conditions on a cation exchange resin and small-scale columns were used in order to assess impurity removal and process yield. The parameters for load and gradient elution were optimized to increase product purity and process productivity with a wide operating window identified where high purity and productivity are achieved. Computational modeling was then used to validate experimental chromatography results and to gain insight on the effect of the chemical modifications on the surface properties of the two peptides. Both modeling and experimental data showed that with optimization, cation exchange could be utilized as a single polishing step for conjugated peptides. Similar purities were achieved as those seen with RP with up to double the productivity.  相似文献   

9.
Protein A chromatography has been used as the mAb capture step in the majority of FDA submissions. In this study, the performance of protein A chromatography, as indicated by capacity, operational flow rate, and productivity (rate of mAb production per liter of resin) was examined over its full history to gain insights into the reasons for its consistent use. Protein A productivity and capacity have increased 4.3 and 5.5% a year, respectively, since 1978. In contrast, protein A operational flow rate increased between 1978 and 2001 and then remained constant or declined as further improvements provided only marginal benefits. The productivity of protein A resin and also the mAb bioreactor titer (14% growth) rapidly improved starting in about 1990 to economically provide material for clinical trials. Technology improvement is typically driven by product sales. The sales of protein A resin, as indicated by sales of protein A ligand (21% growth), have closely paralleled the sales of mAbs (20% growth). Both increased rapidly in 2000 after the first major mAb therapeutics were approved and the markets were developed. It is likely that alternatives to protein A chromatography have not been implemented because of the order of magnitude improvement in protein A performance. Protein A membrane adsorbers and monoliths have higher productivity than packed columns due to their short bed heights and high operational flow rates. These devices are not currently practical for large‐scale manufacturing but may represent a format for future improvements in protein A productivity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1193–1202, 2016  相似文献   

10.
Multicolumn countercurrent solvent gradient purification (MCSGP) is a continuous chromatographic process developed in recent years (Aumann and Morbidelli, 2007a; Aumann et al., 2007) that is particularly suited for applications in the field of bioseparations. Like batch chromatography, MCSGP is suitable for three-fraction chromatographic separations and able to perform solvent gradients but it is superior in terms of solvent consumption, yield, purity, and productivity due to the countercurrent movement of the liquid and the solid phases. In this work, the MCSGP process is applied to the separation of three monoclonal antibody variants on a conventional preparative cation exchange resin. The experimental process performance was compared to simulations based on a lumped kinetic model. Yield and purity values of the target variant of 93%, respectively were obtained experimentally. The batch reference process was clearly outperformed by the MCSGP process.  相似文献   

11.
Continuous countercurrent tangential chromatography (CCTC) enables steady-state continuous bioprocessing with low-pressure operation and high productivity. CCTC has been applied to initial capture of monoclonal antibodies (mAb) from clarified cell culture harvest and postcapture polishing of mAb; however, these studies were performed with commercial chromatography resins designed for conventional column chromatography. In this study, a small particle size prototype agarose resin (20–25 µm) with lower cross-linking was co-developed with industrial partner Purolite and tested with CCTC. Due to increased binding capacity and faster kinetics, the resulting CCTC process showed more than a 2X increase in productivity, and a 2X reduction in buffer consumption over commercial protein A resins used in previous CCTC studies, as well as more than a 10X productivity increase versus conventional column operation. Single-pass tangential flow filtration was integrated with the CCTC system, enabling simple control of eluate concentration. A scale-up exercise was conducted to provide a quantitative comparison of CCTC and batch column chromatography. These results clearly demonstrate opportunities for using otherwise unpackable soft small particle size resins with CCTC as the core of a continuous bioprocessing platform.  相似文献   

12.
A model-based rational strategy for the selection of chromatographic resins is presented. The main question being addressed is that of selecting the most optimal chromatographic resin from a few promising alternatives. The methodology starts with chromatographic modeling,parameters acquisition, and model validation, followed by model-based optimization of the chromatographic separation for the resins of interest. Finally, the resins are rationally evaluated based on their optimized operating conditions and performance metrics such as product purity, yield, concentration, throughput, productivity, and cost. Resin evaluation proceeds by two main approaches. In the first approach, Pareto frontiers from multi-objective optimization of conflicting objectives are overlaid for different resins, enabling direct visualization and comparison of resin performances based on the feasible solution space. The second approach involves the transformation of the resin performances into weighted resin scores, enabling the simultaneous consideration of multiple performance metrics and the setting of priorities. The proposed model-based resin selection strategy was illustrated by evaluating three mixed mode adsorbents (ADH, PPA, and HEA) for the separation of a ternary mixture of bovine serum albumin, ovalbumin, and amyloglucosidase. In order of decreasing weighted resin score or performance, the top three resins for this separation were ADH [PPA[HEA. The proposed model-based approach could be a suitable alternative to column scouting during process development, the main strengths being that minimal experimentation is required and resins are evaluated under their ideal working conditions, enabling a fair comparison. This work also demonstrates the application of column modeling and optimization to mixed mode chromatography.  相似文献   

13.

Background

Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1.

Methods and Findings

To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [3H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein.

Conclusion

Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.  相似文献   

14.
The Chelex resin method was found to be suitable for studying drug effects on Ca2+ binding of proteins. In comparison to conventional dialysis techniques, the Chelex method has the following advantages: Ca2+-EGTA buffer is not necessary, free Ca2+ concentration as low as 10(-9) M can be determined directly, and the reaction is complete in 30 min, thus creating fewer problems with protein denaturation at elevated temperatures. Methods to cope with problems inherent to this assay, such as the excluded volume effect of the resin and protein adsorption by the resin are described. The validity of the method was confirmed by the measurements of Ca2+ binding of troponin in the presence and absence of Mg2+. Using this method, it was demonstrated that ethanol concentration as high as 25% does not influence the Ca2+ binding of troponin.  相似文献   

15.
恩拉霉素作为多肽类抗生素,是一种新型、安全的饲料添加剂。本文建立了一条基于大孔树脂初纯和反相色谱精制的分离纯化工艺。该工艺路线首先使用AB-8大孔树脂在0.012 mol/L盐酸溶液-甲醇(50:50,V/V)缓冲液条件下洗脱实现恩拉霉素初步纯化,再使用制备型C18反相色谱柱在0.05 mol/L磷酸二氢钠-乙腈(70:30,V/V)(p H 4.5)缓冲液洗脱下实现恩拉霉素a和b的有效分离,a、b两个组分纯度分别达到98.5%和98.0%,a和b两种有效成分的总收率为29.2%。本研究为恩拉霉素a和b两种纯品的制备以及高纯度恩拉霉素产品的生产提供了参考。  相似文献   

16.
A purification scheme for cell culture‐derived smallpox vaccines based on an orthogonal downstream process of pseudo‐affinity membrane adsorbers (MA) and hydrophobic interaction chromatography (HIC) was investigated. The applied pseudo‐affinity chromatography, based on reinforced sulfated cellulose and heparin‐MA, was optimized in terms of dynamic binding capacities, virus yield and process productivity. HIC was introduced as a subsequent method to further reduce the DNA content. Therefore, two screens were undertaken. First, several HIC ligands were screened for different adsorption behavior between virus particles and DNA. Second, elution from pseudo‐affinity MA and adsorption of virus particles onto the hydrophobic interaction matrix was explored by a series of buffers using different ammonium sulfate concentrations. Eventually, variations between different cultivation batches and buffer conditions were investigated.The most promising combination, a sulfated cellulose membrane adsorber with subsequent phenyl HIC resulted in overall virus particle recoveries ranging from 76% to 55% depending on the product batch and applied conditions. On average, 61% of the recovered virus particles were infective within all tested purification schemes and conditions. Final DNA content varied from 0.01% to 2.5% of the starting material and the level of contaminating protein was below 0.1%. Biotechnol. Bioeng. 2010;107: 312–320. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Economic optimization of the production of ethanol by simultaneous saccharification and fermentation (SSF) requires knowledge about the influence of substrate and enzyme concentration on yield and productivity. Although SSF has been investigated extensively, the optimal conditions for SSF of softwoods have yet not been determined. In this study, SO2-impregnated and steam-pretreated spruce was used as substrate for the production of ethanol by SSF. Commercial enzymes were used in combination with the yeast Saccharomyces cerevisiae. The effects of the concentration of substrate (2% to 10% w/w) and of cellulases (5 to 32 FPU/g cellulose) were investigated. SSF was found to be sensitive to contamination because lactic acid was produced. The ethanol yield increased with increasing cellulase loading. The highest ethanol yield, 68% of the theoretical based on the glucose and mannose present in the original wood, was obtained at 5% substrate concentration. This yield corresponds to 82% of the theoretical based on the cellulose and soluble glucose and mannose present at the start of SSF. A higher substrate concentration caused inefficient fermentation, whereas a lower substrate concentration, 2%, resulted in increased formation of lactic acid, which lowered the yield. Compared with separate hydrolysis and fermentation, SSF gave a higher yield and doubled the productivity.  相似文献   

18.
Mixed matrix membranes (MMMs), which incorporate adsorptive particles during membrane casting, can be prepared simply and have performances that are competitive with other membrane chromatography materials. The application of MMM chromatography for fractionation of β‐Lactoglobulin from bovine whey is described in this article. MMM chromatography was prepared using ethylene vinyl alcohol polymer and lewatit anion exchange resin to form a flat sheet membrane. The membrane was characterized in terms of structure and its static and dynamic binding capacities were measured. The optimum binding for β‐Lactoglobulin was found to be at pH 6.0 using 20 mM sodium phosphate buffer. The MMM had a static binding capacity of 120 mg/g membrane (36 mg/mL membrane) and 90 mg/g membrane (27 mg/mL membrane) for β‐Lactoglobulin and α‐Lactalbumin, respectively. In batch fractionation of whey, the MMM showed selective binding towards β‐Lactoglobulin compared to other proteins. The dynamic binding capacity of β‐Lactoglobulin in whey solution was about 80 mg/g membrane (24 mg β‐Lac/mL of MMM), which is promising for whey fractionation using this technology. This is the first reported application of MMM chromatography to a dairy feed stream. Biotechnol. Bioeng. 2009;103: 138–147. © 2008 Wiley Periodicals, Inc.  相似文献   

19.
Summary Fast and convenient binding assays using synthetic peptides are of utmost and increasing importance, especially in the search for lead structures or in the field of diagnostics. A polymeric support suitable for solid-phase peptide synthesis was functionalized with two different anchor groups. The interior part of the aminomethylated polystyrene-1%-divinylbenzene resin beads, comprising about 98% of the total loading capacity, was modified by the acid-labile ADPV anchor whereas the 2% outer surface of the polymer was covalently coated with a PEG 10 000 derivative which renders the resin surface hydrophilic and biocompatible. The novel resin was characterized by introducing marker amino acids and by infrared spectroscopy. Employing this bifunctionalized resin for peptide synthesis, free as well as polymer-bound peptides were obtained which were tested for recognition by antibody. The resin-bound peptides proved to be suitable for ELISA and fluorescence assays, as shown by confocal laser microscopic investigations. Peptides from the interior part were obtained in high yield and purity as analyzed by HPLC, electrospray mass spectrometry and Edman degradation.  相似文献   

20.
In studies of currents in perfused cells or their membrane fragments containing potential-dependent Ca channels and Ca2+-activated channels, a buffer slowly binding Ca2+ appears useful in some cases. A buffer with EDTA in excess of Mg2+ has been proposed, and its kinetic characteristics have been calculated. It has been shown that this buffer, depending on its component proportions, may provide Ca2+ binding with a characteristic time of up to tens of milliseconds. For comparison, in the cytoplasm, this time does not exceed 1 ms even with a large calcium signal, as follows from calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号