首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA) have been shown to modulate a number of inflammatory disorders. Mast cells play a critical role in the initiation and maintenance of inflammatory responses. However, the effects of PUFAs on mast cell functions have not been fully addressed. We here-in examined the effects of PUFAs on the high affinity IgE receptor (FcepsilonRI)-mediated mast cell activation using RBL-2H3 cells, a rat mast cell line, that were cultured in the medium containing palmitic acid (PA), AA, or the AA analogs mead acid (MA) and eicosapentaenoic acid (EPA). In AA-supplemented cells, the FcepsilonRI-mediated beta-hexosamidase and TNF-alpha release, calcium (Ca(2+)) influx, and some protein tyrosine phosphorylations including Syk and linker for activation of T cells (LAT) were enhanced, whereas, in MA- or PA-supplemented cells, they were not changed when compared with cells cultured in control medium. In EPA-supplemented cells, the enhancements of beta-hexosamidase release and protein tyrosine phosphorylations were observed. Furthermore, in AA- or EPA-supplemented cells, FcepsilonRI-mediated intracellular production of reactive oxygen species (ROS) that is required for the tyrosine phosphorylation of LAT and Ca(2+) influx were enhanced when compared with the other cells. Thus, preincubation of AA or EPA augmented FcepsilonRI-mediated degranulation in mast cells by affecting early events of FcepsilonRI signal transduction, which might be associated with the change of fatty acid composition of the cell membrane and enhanced production of ROS. The results suggest that some PUFAs can modulate FcepsilonRI-mediated mast cell activation and might affect FcepsilonRI/mast cell-mediated inflammation, such as allergic reaction.  相似文献   

2.
Mitochondria are the main organelles that produce reactive oxygen species (ROS). Overproduction of ROS induces oxidative damage to macromolecules, including lipids, and can damage cellular membrane structure and functions. Mitochondria, the main target of ROS-induced damage, are equipped with a network of antioxidants that control ROS production. Dietary intake of omega-3 polyunsaturated fatty acids (ω3PUFAs) and consequently the increase in ω3PUFA content of membrane lipids may be disadvantageous to the health because ROS-induced oxidative peroxidation of ω3PUFAs within membrane phospholipids can lead to the formation of toxic products. Mitochondrial control of lipid peroxidation is one of the mechanisms that protect cell against oxidative damage. This review discusses the role of mitochondria in ROS generation and the mechanisms by which it regulates ROS production. The susceptibility to peroxidation of PUFAs by ROS raises the question of the adverse effects of ω3PUFA dietary supplementation on embryonic development and prenatal developmental outcomes.  相似文献   

3.
Many diving mammals are known for their ability to deal with nitrogen supersaturation and to tolerate apnea for extended periods. They are all characterized by high oxygen-carrying capacity in blood together with high oxygen storage in their muscle mass due to large myoglobin concentrations. The above properties theoretically also imply a high tissue antioxidant defenses (AD) to counteract reactive oxygen species (ROS) generation associated with the rapid transition from apnea to reoxygenation. Different enzymatic (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione S-transferase), and non-enzymatic (levels of glutathione) AD as well as cellular damage (thiobarbituric acid-reactive substances contents, as a measure of lipoperoxidation) were measured in blood samples obtained from anesthetized animals, and also in blood obtained from recently dead diving mammals, and compared to some terrestrial mammals (n=5 in both groups). The results confirmed that diving mammals have, in general, higher antioxidant status compared to non-diving mammals. Apparently, to avoid exposure of tissues to changing high oxygen levels, and therefore to avoid an oxidative stress condition related to antioxidant consumption and increased ROS generation, diving mammals possess constitutive high levels of antioxidants in tissues. These data are in agreement with short-term AD adaptations related to torpor and to animals that experience large daily changes in oxygen consumption. These data are similar to the long-term adaptations of animals that undergo hibernation, estivation, freezing-thawing and dehydration-rehydration processes. In summary, animals that routinely face high changes in oxygen availability and/or consumption seem to show a general strategy to prevent oxidative damage by having either appropriate high constitutive AD and/or the ability to undergo arrested states, where depressed metabolic rates minimize the oxidative challenge.  相似文献   

4.
The bloom-forming cyanobacterium Nodularia spumigena produces toxic compounds, including nodularin, which is known to have adverse effects on various organisms. We monitored the primary effects of nodularin exposure on physiological parameters in Spinachia oleracea. We present the first evidence for the uptake of nodularin by a terrestrial plant, and show that the exposure of spinach to cyanobacterial crude water extract from nodularin-producing strain AV1 results in inhibition of growth and bleaching of the leaves. Despite drastic effects on phenotype and survival, nodularin did not disturb the photosynthetic performance of plants or the structure of the photosynthetic machinery in the chloroplast thylakoid membrane. Nevertheless, the nodularin-exposed plants suffered from oxidative stress, as evidenced by a high level of oxidative modifications targeted to various proteins, altered levels of enzymes involved in scavenging of reactive oxygen species (ROS), and increased levels of α-tocopherol, which is an important antioxidant. Moreover, the high level of cytochrome oxidase (COX II), a typical marker for mitochondrial respiratory protein complexes, suggests that the respiratory capacity is increased in the leaves of nodularin-exposed plants. Actively respiring plant mitochondria, in turn, may produce ROS at high rates. Although the accumulation of ROS and induction of the ROS scavenging network enable the survival of the plant upon toxin exposure, the upregulation of the enzymatic defense system is likely to increase energetic costs, reducing growth and the ultimate fitness of the plants.  相似文献   

5.
Oxidative stress, associated with a high production of reactive oxygen species (ROS) by immune cells, is involved in the endotoxic shock caused by endotoxin. This oxidative stress is linked to the inability of the immune cells to maintain adequate levels of antioxidants with free radical-scavenging action. Glutathione (GSH) and ascorbic acid (AA) are intracellular and extracellular antioxidants (ROS scavengers) that improve the leukocyte functions. Therefore, in the present work we have determined the reduced GSH and AA content in axillary nodes, spleen, thymus and peritoneal mononuclear leukocytes from BALB/c mice subjected to lethal endotoxic shock produced by intraperitoneal injection of E. coli lipopolysaccharide (LPS, 100 mg/kg), at several times (0, 2, 4, 12 and 24 h) after LPS injection. Endotoxic shock decreased the levels of AA in the leukocytes from the three organs as well as the levels of GSH in axillary nodes and spleen cells while it increased the GSH levels in thymus and peritoneum. These results are in agreement with the oxidative stress and the altered function previously observed in those leukocytes, and they suggest that antioxidant administration may be useful for the treatment of endotoxic shock and other oxidative stress situations with altered immunological responses.  相似文献   

6.
Objectives: Endometriotic cyst fluid (ECF) contains a large amount of reactive oxygen species (ROS), and endometriotic cysts are exposed to strong oxidative stress, which may cause malignant transformation. In this study, ROS production by ECF was clinically analysed.

Methods: Human immortalized epithelial cells derived from ovarian endometrioma (EMosis-CC/TERT 1) were treated with ECF. In addition, ROS production in EMosis-CC/TERT 1 was measured, and its clinical significance was analysed.

Results: A total of 38 ECF samples were obtained from patients diagnosed with endometriotic cysts. In EMosis-CC/TERT1, significantly higher levels of ROS were induced by ECF than by the vehicle control and ferric nitrilotriacetate. There were no significant differences in ROS production by laterality and preoperative serum CA125 values. There were several patients whose cyst sizes were approximately 5?cm and had relatively high ROS production. Production of ROS by ECF was relatively higher in patients older than 40 years of age than in those younger than 40.

Discussion: Our study revealed that ROS are highly produced by ECF in EMosis-CC/TERT1 cells; therefore, exposure to ECF induced strong oxidative stress. Development of a therapeutic strategy to reduce ROS production might be useful for preventing malignant transformation of endometriotic cysts.  相似文献   

7.
The protection of the developing organism from oxidative damage is ensured by antioxidant defense systems to cope with reactive oxygen species (ROS), which in turn can be influenced by dietary polyunsaturated fatty acids (PUFAs). PUFAs in membrane phospholipids are substrates for ROS-induced peroxidation reactions. We investigated the effects of dietary supplementation with omega-3 PUFAs on lipid peroxidation and antioxidant enzyme activities in rat cerebrum, liver and uterus. Pups born from dams fed a diet low in omega-3 PUFAs were fed at weaning a diet supplying low α-linolenic acid (ALA), adequate ALA or enriched with eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Malondialdehyde (MDA), a biomarker of lipid peroxidation, and the activities of superoxide dismutase 1 (SOD1), SOD2, catalase (CAT) and glutathione peroxidase (GPX) were determined in the three target organs. Compared to low ALA feeding, supplementation with adequate ALA or with EPA + DHA did not affect the cerebrum MDA content but increased MDA content in liver. Uterine MDA was increased by the EPA + DHA diet. Supplementation with adequate ALA or EPA + DHA increased SOD2 activity in the liver and uterus, while only the DHA diet increased SOD2 activity in the cerebrum. SOD1, CAT and GPX activities were not altered by ALA or EPA + DHA supplementation. Our data suggest that increased SOD2 activity in organs of the growing female rats is a critical determinant in the tolerance to oxidative stress induced by feeding a diet supplemented with omega-3 PUFAs. This is may be a specific cellular antioxidant response to ROS production within the mitochondria.  相似文献   

8.
The present study highlights the important association between lipid alterations and differentiation/apoptotic responses in human colon differentiating (FHC) and nondifferentiating (HCT-116) cell lines after their treatment with short-chain fatty acid sodium butyrate (NaBt), polyunsaturated fatty acids (PUFAs), and/or their combination. Our data from GC/MS and LC/MS/MS showed an effective incorporation and metabolization of the supplemented arachidonic acid (AA) or docosahexaenoic acid (DHA), resulting in an enhanced content of the respective PUFA in individual phospholipid (PL) classes and an altered composition of the whole cellular fatty acid spectrum in both FHC and HCT-116 cells. We provide novel evidence that NaBt combined with PUFAs additionally modulated AA and DHA cellular levels and caused their shift from triacylglycerol to PL fractions. NaBt increased, while AA, DHA and their combination with NaBt decreased endogenous fatty acid synthesis in FHC but not in HCT-116 cells. Fatty acid treatment also altered membrane lipid structure, augmented cytoplasmic lipid droplet accumulation, reactive oxygen species (ROS) production and dissipation of the mitochondrial membrane potential. All these parameters were significantly enhanced by combined NaBt/PUFA treatment, but only in FHC cells was this accompanied by highly increased apoptosis and suppressed differentiation. Moreover, the most significant changes of ROS production, differentiation and apoptosis among the parameters studied, the highest effects of combined NaBt/PUFA treatment and a lower sensitivity of HCT-116 cells were confirmed using two-way ANOVA. Our results demonstrate an important role of fatty acid-induced lipid alterations in the different apoptotic/differentiation response of colon cells with various carcinogenic potential.  相似文献   

9.
In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the capacity of particles to oxidize methionine in a cell-free in vitro system for determination of their innate oxidative potential and by alveolar macrophages (AMs) to determine production of arachidonic acid (AA), including formation of prostaglandin E2 (PGE2), leukotriene B4 (LTB4), reactive oxygen species (ROS), and oxidative stress marker 8-isoprostane. EC exhibiting high oxidative potential induced generation of AA, PGE2, LTB4, and 8-isoprostane in canine and human AMs. Printex 90, Printex G, and DEP, showing low oxidative capacity, still induced formation of AA and PGE2, but not that of LTB4 or 8-isoprostane. Aging of EC lowered oxidative potential while still inducing production of AA and PGE2 but not that of LTB4 and 8-isoprostane. Cellular ROS production was stimulated by all particles independent of oxidative potential. Particle-induced formation of AA metabolites and ROS was dependent on mitogen-activated protein kinase kinase 1 activation of cytosolic phospholipase A2 (cPLA2) as shown by inhibitor studies. In conclusion, cPLA2, PGE2, and ROS formation was activated by all particle types, whereas LTB4 production and 8-isoprostane were strongly dependent on particles' oxidative potential. Physical and chemical parameters of particle surface correlated with oxidative potential and stimulation of AM PGE2 and 8-isoprostane production.  相似文献   

10.
Oxidative stress in submerged cultures of fungi   总被引:5,自引:0,他引:5  
It has been known for many years that oxygen (O2) may have toxic effects on aerobically growing microorganisms, mainly due to the threat arising from reactive oxygen species (ROS). In submerged culture industrial fermentation processes, maintenance of adequate levels of O2 (usually measured as dissolved oxygen tension (DOT)) can often be critical to the success of the manufacturing process. In viscous cultures of filamentous cultures, actively respiring, supplying adequate levels of O2 to the cultures by conventional air sparging is difficult and various strategies have been adopted to improve or enhance O2 transfer. However, adoption of those strategies to maintain adequate levels of DOT, that is, to avoid O2 limitation, may expose the fungi to potential oxidative damage caused by enhanced flux through the respiratory system. In the past, there have been numerous studies investigating the effects of DOT on fungal bioprocesses. Generally, in these studies moderately enhanced levels of O2 supply resulted in improvement in growth, product formation and acceptable morphological changes, while the negative impact of higher levels of DOT on morphology and product synthesis were generally assumed to be a consequence of "oxidative stress." However, very little research has actually been focused on investigation of this implicit link, and the mechanisms by which such effects might be mediated within industrial fungal processes. To elucidate this neglected topic, this review first surveys the basic knowledge of the chemistry of ROS, defensive systems in fungi and the effects of DOT on fungal growth, metabolism and morphology. The physiological responses of fungal cells to oxidative stress imposed by artificial and endogenous stressors are then critically reviewed. It is clear that fungi have a range of methods available to minimize the negative impacts of elevated ROS, but also that development of the various defensive systems or responses, can itself have profound consequences upon many process-related parameters. It is also clear that many of the practically convenient and widely used experimental methods of simulating oxidative stress, for example, addition of exogenous menadione or hydrogen peroxide, have effects on fungal cultures quite distinct from the effects of elevated levels of O2, and care must thus be exercised in the interpretation of results from such studies. The review critically evaluates our current understanding of the responses of fungal cultures to elevated O2 levels, and highlights key areas requiring further research to remedy gaps in knowledge.  相似文献   

11.
Humans are exposed to dietary acrylamide (AA) during their lifetime; it is therefore necessary to investigate the mechanisms associated with AA induced toxic effects. Accumulating evidence indicates that oxidative stress may contribute to AA cytotoxicity, but the link between oxidative stress and AA cytotoxicity in the gastrointestinal tract, the primary organ in contact with dietary AA, has not been described. In this study, we evaluate the alterations of the redox balance induced by AA in Caco-2 intestinal cells as well as the potential protective role of natural antioxidants such as a well-standardized cocoa polyphenolic extract (CPE) and its main polyphenol components epicatechin (EC) and procyanidin B2 (PB2). We found that AA-induced oxidative stress in Caco-2 cells is evidenced by glutathione (GSH) depletion and reactive oxygen species (ROS) overproduction. AA also activated the extracellular-regulated kinases and the c-Jun N-amino terminal kinases (JNKs) leading to an increase in caspase-3 activity and cell death. Studies with appropriate inhibitors confirmed the implication of oxidative stress and JNKs activation in AA-induced apoptosis. Additionally, AA cytotoxicity was counteracted by CPE or PB2 by inhibiting GSH consumption and ROS generation, increasing the levels of gamma-glutamyl cysteine synthase and glutathione-S-transferase and blocking the apoptotic pathways activated by AA. Therefore, AA-induced cytotoxicity and apoptosis are closely related to oxidative stress in Caco-2 cells. Interestingly, natural dietary antioxidant such as PB2 and CPE were able to suppress AA toxicity by improving the redox status of Caco-2 cells and by blocking the apoptotic pathway activated by AA.  相似文献   

12.

Reactive oxygen species (ROS) are formed in photosystem II (PSII) under various types of abiotic and biotic stresses. It is considered that ROS play a role in chloroplast-to-nucleus retrograde signaling, which changes the nuclear gene expression. However, as ROS lifetime and diffusion are restricted due to the high reactivity towards biomolecules (lipids, pigments, and proteins) and the spatial specificity of signal transduction is low, it is not entirely clear how ROS might transduce signal from the chloroplasts to the nucleus. Biomolecule oxidation was formerly connected solely with damage; nevertheless, the evidence appears that oxidatively modified lipids and pigments are be involved in chloroplast-to-nucleus retrograde signaling due to their long diffusion distance. Moreover, oxidatively modified proteins show high spatial specificity; however, their role in signal transduction from chloroplasts to the nucleus has not been proven yet. The review attempts to summarize and evaluate the evidence for the involvement of ROS in oxidative signaling in PSII.

  相似文献   

13.
While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production.  相似文献   

14.
Oxidative stress associated with reactive oxygen species (ROS) and cytokines produced by immune cells, which is involved in septic shock caused by endotoxin, can be controlled to a certain degree by antioxidants with free radical scavenging action. N-acetylcysteine (NAC) and ascorbic acid (AA) are ROS scavengers that improve the immune response, and modulate macrophage function in mice with endotoxin-caused oxidative stress. Therefore, we have investigated the in vitro effects of these antioxidants on the functions of lymphocytes from BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg). Adherence to tissues and chemotaxis (the earliest two functions of lymphocytes in the immune response), as well as ROS levels and TNFα production were determined in the presence or absence of NAC or AA (0.001, 0.01, 0.1, 1 and 2.5 mM) in lymphocytes from peritoneum, axillary nodes, spleen and thymus obtained at several times (2, 4, 12 and 24 hours) after LPS injection. Endotoxic shock decreases the chemotaxis of lymphocytes from all the above localizations and increases their adherence, TNFα and ROS production. These changes in lymphocyte function were counteracted by NAC and AA, bringing these functions to values near those of control animals. Our data suggest that lymphocytes are important targets of endotoxins contributing to oxidative stress by septic shock, and that antioxidants can preserve the function of lymphocytes, preventing the homeostatic disturbances caused by endotoxin.  相似文献   

15.
Relatively low or high temperatures are responsible for a variety of physiological stress responses in insects and mites. Induced thermal stress was recently associated with increased reactive oxygen species (ROS) generation, which caused oxidative damage. In this study, we examined the time-related effect of the relatively low (0, 5, 10, and 15 °C) or high (32, 35, 38, and 41 °C) temperatures on the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidases (POX), and glutathione-S-transferase (GST), and the total antioxidant capacity (TEAC) of the citrus red mite, Panonychus citri (McGregor). The malondialdehyde (MDA) concentration, as a marker of lipid peroxidation in organisms, was also measured in the citrus red mite under thermal stress conditions. Results showed that SOD and GST activities were significantly increased and play an important role in the process of antioxidant response to thermal stress. Lipid peroxidation levels increased significantly (P < 0.001) and changed in a time-dependent manner. CAT and POX activity, as well as TEAC, did not vary significantly and play a minor role to remove the ROS generation. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play an important role in reducing oxidative damage in the citrus red mite.  相似文献   

16.
Despite the well-known benefits of omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation on human health, relatively little is known about the effect of n-3 PUFA intake on fertility. More specifically, the aim of this study was to determine how oocyte and preimplantation embryo development might be influenced by n-3 PUFA supply and to understand the possible mechanisms underlying these effects. Adult female mice were fed a control diet or a diet relatively high in the long-chain n-3 PUFAs for 4 wk, and ovulated oocytes or zygotes were collected after gonadotropin stimulation. Oocytes were examined for mitochondrial parameters (active mitochondrial distribution, mitochondrial calcium and membrane potential) and oxidative stress, and embryo developmental ability was assessed at the blastocyst stage following 1) in vitro fertilization (IVF) or 2) culture of in vivo-derived zygotes. This study demonstrated that exposure of the oocyte during maturation in the ovary to an environment high in n-3 PUFA resulted in altered mitochondrial distribution and calcium levels and increased production of reactive oxygen species. Despite normal fertilization and development in vitro following IVF, the exposure of oocytes to an environment high in n-3 PUFA during in vivo fertilization adversely affected the morphological appearance of the embryo and decreased developmental ability to the blastocyst stage. This study suggests that high maternal dietary n-3 PUFA exposure periconception reduces normal embryo development in the mouse and is associated with perturbed mitochondrial metabolism, raising questions regarding supplementation with n-3 PUFAs during this period of time.  相似文献   

17.
ABSTRACT:?

It has been known for many years that oxygen (O2) may have toxic effects on aerobically growing microorganisms, mainly due to the threat arising from reactive oxygen species (ROS). In submerged culture industrial fermentation processes, maintenance of adequate levels of O2 (usually measured as dissolved oxygen tension (DOT)) can often be critical to the success of the manufacturing process. In viscous cultures of filamentous cultures, actively respiring, supplying adequate levels of O2 to the cultures by conventional air sparging is difficult and various strategies have been adopted to improve or enhance O2 transfer. However, adoption of those strategies to maintain adequate levels of DOT, that is, to avoid O2 limitation, may expose the fungi to potential oxidative damage caused by enhanced flux through the respiratory system. In the past, there have been numerous studies investigating the effects of DOT on fungal bioprocesses. Generally, in these studies moderately enhanced levels of O2 supply resulted in improvement in growth, product formation and acceptable morphological changes, while the negative impact of higher levels of DOT on morphology and product synthesis were generally assumed to be a consequence of “oxidative stress.” However, very little research has actually been focused on investigation of this implicit link, and the mechanisms by which such effects might be mediated within industrial fungal processes. To elucidate this neglected topic, this review first surveys the basic knowledge of the chemistry of ROS, defensive systems in fungi and the effects of DOT on fungal growth, metabolism and morphology. The physiological responses of fungal cells to oxidative stress imposed by artificial and endogenous stressors are then critically reviewed. It is clear that fungi have a range of methods available to minimize the negative impacts of elevated ROS, but also that development of the various defensive systems or responses, can itself have profound consequences upon many process-related parameters. It is also clear that many of the practically convenient and widely used experimental methods of simulating oxidative stress, for example, addition of exogenous menadione or hydrogen peroxide, have effects on fungal cultures quite distinct from the effects of elevated levels of O2, and care must thus be exercised in the interpretation of results from such studies. The review critically evaluates our current understanding of the responses of fungal cultures to elevated O2 levels, and highlights key areas requiring further research to remedy gaps in knowledge.  相似文献   

18.
19.
In nature, no single plant completes its life cycle withoutencountering environmental stress. When plant cells surpassstress threshold stimuli, chemically reactive oxygen species(ROS) are generated that can cause oxidative damage or act assignals. Plants have developed numerous ROS-scavenging systemsto minimize the cytotoxic effects of ROS. The role of sucrosyloligosaccharides (SOS), including fructans and the raffinosefamily oligosaccharides (RFOs), is well established during stressphysiology. They are believed to act as important membrane protectorsin planta. So far a putative role for sucrose and SOS duringoxidative stress has largely been neglected, as has the contributionof the vacuolar compartment. Recent studies suggest a link betweenSOS and oxidative defence and/or scavenging. SOS might be involvedin stabilizing membrane-associated peroxidases and NADPH oxidases,and SOS-derived radicals might fulfil an intermediate role inoxido-reduction reactions taking place in the vicinity of membranes.Here, these emerging features are discussed and perspectivesfor future research are provided. Key words: Fructan, oxidative stress, raffinose, ROS, sucrose, sucrosyl oligosaccharides Received 25 September 2008; Revised 20 October 2008 Accepted 23 October 2008  相似文献   

20.
Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS) or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea’s ability to (i) reverse the increase in stress-related metabolites (5-HIAA and FFA), (ii) prevent lipid peroxidation (LPO), (iii) restore stress-induced protein degradation (PD), (iv) regulate glutathione metabolism (GSH and GSH/GSSG ratio), and (v) modulate changes in the activities of antioxidant enzymes (SOD and CAT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号