首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A cell cycle analysis of theTrichoplusia ni (TN-368) insect cell line is described. By means of autoradiography and percent labeled metaphase data, the cell cycle parameters were determined to be as follows: S, 4.5 hr; G2, 8.5 hr; M, 0.5 hr; G1, 1.0 hr; the total cell time being 14.5 hr. A synchronization procedure using 50mm thymidine in a double block procedure was used to provide a method of obtaining a large number of cells in particular cell cycle phases, especially S and G2. This work was supported in part by U.S. Environmental Protection Agency Grant R-802516.  相似文献   

2.
Normal rat kidney (NRK) cells, NRK cells infected with Rauscher murine leukemia virus, and NRK cells infected with Kirsten murine sarcoma-leukemia virus (NRK-K) were synchronized by a double thymidine block. At intervals after release from thymidine blockage, the cells were examined for the presence of viral antigens in the cytoplasm and on the cell surface by immunofluorescent microscopy by using goat anti-Rauscher murine leukemia virus and goat anti-Moloney leukemia virus (Tween-ether disrupted) sera. Detection of viral antigens in the cytoplasm was periodic during the cell cycle. Antigens were detected first during the S phase, increased during the G2 phase, and disappeared during the M and G1 phases. A similar pattern of surface immunofluorescence was observed. Infectious virus was detected in culture fluids from synchronized cells during the M phase. Surface immunofluorescence was detected in NRK-K cells with anti-Rauscher murine leukemia virus and may represent the presence of group-specific antigens on the cell surface. Control, uninfected NRK cells, which did not normally fluoresce, showed weak immunofluorescence during the S and G2 phases after synchronization. Synchronization can be used to amplify latent oncornavirus expression.  相似文献   

3.
Expression of the DNA repair and recombination protein human Rad51 (HsRad51) is increased in transformed cells and in cancer cell lines. In order to study the effects of acute HsRad51 ectopic overexpression on cell proliferation, cell cycle progression, and apoptosis, we generated clones of the human fibrosarcoma cell line HT1080 carrying a HsRad51 transgene under a repressible promoter. The HsRad51-overexpressing cells showed decreased plating efficiency and growth rate in a dose-dependent manner with regard to the degree of overexpression. An accumulation of HsRad51-overexpressing cells in G(2) was observed following release of cells after synchronization with double thymidine block. Moreover, the fraction of apoptotic cells measured by annexin V-FACS increased with the time of HsRad51 overexpression. In the light of these observations, sustained increased levels of HsRad51 may contribute to tumor progression by causing a selection for cells tolerant to the growth-suppressive and apoptosis-inducing effects of acute HsRad51 overexpression.  相似文献   

4.
We have investigated whether cell surface changes associated with growth control and malignant transformation are linked to the cell cycle. Chicken embryo cells synchronized by double thymidine block were examined for cell-cycle-dependent alterations in membrane function (measured by transport of 2-deoxyglucose, uridine, thymidine, and mannitol), in cell surface morphology (examined by scanning electron microscopy), and in the ability of tumor virus gene expression to induce a transformation-specific change in membrane function. We reach the following conclusions: (a) The high rate of 2-deoxyglucose transport seen in transformed cells and the low rates of 2-deoxyglucose and uridine transport characteristic of density-inhibited cells do not occur in normal growing cells as they traverse the cell cycle. (b) Although there are cell cycle-dependent changes in surface morphology, they are not reflected in corresponding changes in membrane function. (c) Tumor virus gene expression can alter cell membrane function at any stage in the cell cycle and without progression through the cell cycle.  相似文献   

5.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

6.
IGFBP-3 has both stimulatory and inhibitory effects on cancer progression. The growth of EO771 mammary carcinoma cells as syngeneic tumors in C57BL/6 mice is reduced in Igfbp3-null (BP3KO) mice, suggesting that systemic IGFBP-3 enhances tumor progression. In this study we assessed the growth of EO771 cells expressing human IGFBP-3 in BP3KO mice. Cells expressing hIGFBP-3 showed decreased proliferation in vitro and increased levels of IGF-1 receptor (IGF1R) protein but not mRNA, consistent with sequestration of endogenous IGF by IGFBP-3. The growth rate of these cells was restored by exposure to IGF-1 or analogues with reduced affinity for IGFBP-3 (long Arg3-IGF-1) or IGF1R (Leu24-IGF-1). In EO771 cells implanted orthotopically into mice, hIGFBP-3 expression by the cells inhibited tumor establishment in BP3KO but not wild-type mice. For tumors that successfully established, final weight was not affected significantly by hIGFBP-3 expression. However, final tumor weight was inversely related to intratumoral T cell counts, and sera from BP3KO mice with tumors showed low-titer immunoreactivity against IGFBP-3. The contrasting effects on tumor establishment and progression of IGFBP-3 expressed by mammary carcinoma cells, compared to systemic stromal and circulating IGFBP-3, highlights the complexity of growth regulation by IGFBP-3 in mammary tumors.  相似文献   

7.
Studies were undertaken on a highly metastatic hamster fibrosarcoma cell line with a view to assessing whether cells entering into apoptosis, measured by counting the number of transglutaminase mediated detergent insoluble envelopes, has any synchrony with a particular phase of the cell cycle. A double exposure of thymidine was used to block cells in early S-phase. Flow cytometry in combination with [3H]thymidine incorporation into DNA was used to assess the degree of synchrony and progression through the different phases of cell cycle. The apoptotic index was found to be at its maximum in mid-S-phase. Measurement of transglutaminase activity in each phase of the cell cycle indicated that the specific activity was also at its greatest during mid S-phase. The level of enzyme was relatively unchanged throughout the cell cycle indicating that the regulation of transglutaminase activity occurs primarily through effects on catalytic activity rather than enzyme synthesis.  相似文献   

8.
Abstract.   It has been predicted that whole-culture methods of synchronization cannot synchronize cells. We have tested whether thymidine block, one type of whole-culture synchronization, can synchronize L1210 cells. We demonstrate experimentally that the thymidine block method cannot produce a synchronized culture. Although thymidine-treated cells are arrested primarily with an S-phase amount of DNA, there is no narrowing of the cell size distribution and there is no synchronized division pattern following release from the thymidine block. In contrast to a whole-culture synchronization method, cells produced by a selective (i.e. non-whole-culture) method not only have a specific DNA content, but also have a narrow size distribution and divide synchronously. Generalizing the results to other cell lines, we suggest that these conclusions call into question experimental measurements of gene expression during the division cycle based on thymidine inhibition synchronization.  相似文献   

9.
This protocol describes a method to permit the tracking of cells through the cell cycle without requiring the cells to be synchronized. Achieving cell synchronization can be difficult for many cell systems. Standard practice is to block cell cycle progression at a specific stage and then release the accumulated cells producing a wave of cells progressing through the cycle in unison. However, some cell types find this block toxic resulting in abnormal cell cycling, or even mass death. Bromodeoxyuridine (BrdU) uptake can be used to track the cell cycle stage of individual cells. Cells incorporate this synthetic thymidine analog, while synthesizing new DNA during S phase. By providing BrdU for a brief period it is possible to mark a pool of cells that were in S phase while the BrdU was present. These cells can then be tracked through the remainder of the cell cycle and into the next round of replication, permitting the duration of the cell cycle phases to be determined without the need to induce a potentially toxic cell cycle block. It is also possible to determine and correlate the expression of both internal and external proteins during subsequent stages of the cell cycle. These can be used to further refine the assignment of cell cycle stage or assess effects on other cellular functions such as checkpoint activation or cell death.  相似文献   

10.
During the course of our studies on murine tumor cell metastases, one of our variant lines (called L61-M) was found to be unable to incorporate [methyl-3H]thymidine into DNA, due to a spontaneous deficiency in thymidine kinase (TK) activity. L61-M cells are unable to proliferate in HAT selection medium and are resistant to bromodeoxyuridine (BrdU). TK activity in L61-M cells is 4.2% of that found in the wild-type parental MDAY-D2 cell line. Treatment of L61-M with 5-azacytidine, a known inducer of DNA hypomethylation, resulted in the expression of TK activity. These observations suggest that the TK deficiency in the L61-M cell line was due in part to an alteration in the methylation pattern of DNA, resulting in the diminished expression of the TK gene. These results demonstrate the ability of 5-azacytidine to induce TK activity in a spontaneously enzyme-deficient murine tumor cell line.  相似文献   

11.
The protein (MDM2) coded by the mouse double minute-2 (mdm2) gene or its human homologue is well known as an oncoprotein. Malignant human tumors particularly breast tumors and soft tissue sarcomas frequently overexpress MDM2. Artificial amplification of mdm2 gene derived from a transformed murine cell line enhances tumorigenic potential of murine cells. Consistent with its tumorigenic property, mouse or human MDM2 can inactivate several functions of the tumor suppressor p53 and can degrade p53. The protein also interacts with other tumor suppressors, and these interactions may contribute to its tumorigenic property. In spite of its oncogenic role, mouse or human MDM2 induces G(1) arrest in normal human or murine cells. Some cell lines bearing known genetic mutations are insensitive to MDM2-mediated growth arrest. This review is aimed to collect available information on the functions of MDM2 that could potentially regulate cell cycle and to discuss how this information may fit in one model that could explain the two apparently opposite G(1) arrest and oncogenic function of MDM2.  相似文献   

12.
Metastatic variant cell lines of the murine RAW117 large cell lymphoma were used to study the cell surface components involved in syngeneic tumor cell/microvessel endothelial cell interactions. Poorly liver-metastatic parental RAW117-P cell line adhered to murine hepatic sinusoidal endothelial cell monolayers at significantly lower rates than the liver-selected, highly liver-metastatic RAW117-H10 line and both cell lines were poorly adherent to lung microvessel and bovine aorta endothelial cells. Viable, 2% 1-butanol-treated RAW117-H10 tumor cells formed fewer liver tumor nodules in experimental metastasis assays than untreated H10 cells and were significantly less adherent to murine hepatic sinusoidal endothelial cell monolayers. When 2% 1-butanol extracts of metabolically labeled or CHAPS detergent lysates of cell surface-labeled tumor cells were analyzed for their ability to bind to fixed microvessel endothelial cell monolayers, quantitative differences were found in the extractable tumor cell surface components that bound to the different organ-derived microvessel endothelial cells. Cell surface components (1-butanol extractable), of Mr approximately 85,000-90,000 and approximately 37,000-40,000 bound to hepatic sinusoidal endothelial cell monolayers to a greater extent than to murine lung microvessel endothelial or bovine aortic endothelial cell monolayers, whereas tumor cell surface components of Mr approximately 45,000, approximately 33,000, and approximately 25,000 bound similarly to endothelial cells regardless of origin. The results suggest but do not prove that tumor cell/endothelial cell adhesion involves multiple tumor cell surface components, some of which commonly bind to various endothelial cells and others for which binding may be dictated by the tissue origin and type of endothelial cell. Particular RAW117 butanol-extractable cell membrane components were associated with tumor cell-endothelial cell adhesion, and these components could be responsible, in part, for the preferential adhesion of RAW117 cells to liver sinusoidal endothelial cells and metastasis to liver.  相似文献   

13.
This is the first report of the elimination of confronting cisternae (CC), prominent organelles in dividing HeLa cells, upon experimental manipulation of the cells. CC are lost when a double thymidine block is employed to synchronize cell division. This observation is consistent with the hypothesis that the occurrence of CC in some fetal cells and in selected tumor cells depends on the speed at which the cells cycle through mitosis. If thymidine blocks DNA synthesis and arrests cells at the G1/S interface, then thymidine probably has an indirect effect on CC. This paper reports the effect of thymidine on the occurrence of CC and briefly discusses how inhibitors of membrane synthesis or microtubule polymerization may affect the occurrence of CC during mitosis.  相似文献   

14.
The effects of various chemotherapeutic agents on the volume of Chinese hamster V79 fibroblasts and murine lymphoma L5178Y cells were studied by electronic volume spectroscopy. Cells arrested in the division cycle by a chemotherapeutic block continued to grow in volume resulting in abnormally large cells unable to reduce their volume by cell division. This was observed in cells treated with colcemid, vinblastine, excess thymidine, hydroxyurea, ARA-C, 5-fluorouracil, actinomycin-D and bleomycin, but not with puromycin or cycloheximide. Increase in cell volume of blocked cells was correlated with a decrease in cell survival as measured by clonogenic ability. The results suggest the possibility of volume spectroscopy for a rapid in vitro test to determine tumor sensitivity to chemotherapeutic agents and the in vivo monitoring of response to chemotherapy. Mechanisms for increased cell kill by a second agent acting selectively on enlarged cells are considered.  相似文献   

15.
Translation mechanisms at different stages of the cell cycle have been studied for many years, resulting in the dogma that translation rates are slowed during mitosis, with cap-independent translation mechanisms favored to give expression of key regulatory proteins. However, such cell culture studies involve synchronization using harsh methods, which may in themselves stress cells and affect protein synthesis rates. One such commonly used chemical is the microtubule de-polymerization agent, nocodazole, which arrests cells in mitosis and has been used to demonstrate that translation rates are strongly reduced (down to 30% of that of asynchronous cells). Using synchronized HeLa cells released from a double thymidine block (G1/S boundary) or the Cdk1 inhibitor, RO3306 (G2/M boundary), we have systematically re-addressed this dogma. Using FACS analysis and pulse labeling of proteins with labeled methionine, we now show that translation rates do not slow as cells enter mitosis. This study is complemented by studies employing confocal microscopy, which show enrichment of translation initiation factors at the microtubule organizing centers, mitotic spindle, and midbody structure during the final steps of cytokinesis, suggesting that translation is maintained during mitosis. Furthermore, we show that inhibition of translation in response to extended times of exposure to nocodazole reflects increased eIF2α phosphorylation, disaggregation of polysomes, and hyperphosphorylation of selected initiation factors, including novel Cdk1-dependent N-terminal phosphorylation of eIF4GII. Our work suggests that effects on translation in nocodazole-arrested cells might be related to those of the treatment used to synchronize cells rather than cell cycle status.  相似文献   

16.
MKT-1, a virus nonproducer lymphoblastoid cell line established from a Marek's disease tumor, was synchronized by double thymidine block to determine the sequence of events in the synthesis of cellular and latent marek's disease virus DNA. Cellular DNA synthesis was measured by incorporation of [3H]thymidine, whereas viral DNA synthesis was determined by DNA-DNA reassociation kinetics. The results of these studies indicate that the resident Marek's disease viral DNA in MKT-1 cells replicates during the early S phase of the cell cycle, before the onset of active cellular DNA synthesis. This observation is similar to that seen in the replication of resident Epstein-Barr virus DNA in synchronized Raji cells.  相似文献   

17.
Wnt基因所编码的蛋白质与许多生长因子一样具有分泌型生长因子的结构特点,其家族成员Wnt-5A是许多恶性肿瘤的自分泌生长因子,在肾细胞癌中表达显著升高.为研究在细胞周期的不同阶段生长因子Wnt-5A在转录水平的表达情况,我们采用胸腺嘧啶双阻断及高压笑气处理的方法,使肾细胞癌细胞系GRC-1细胞同步化.用半定量反转录多聚酶链反应对处于细胞周期不同阶段的细胞cDNA进行扩增,S期与G1,M期Wnt-5A mRNA表达存在差异显著(P<0.05).结果提示生长因子Wnt-5A在肾细胞癌的发生中具有潜在的作用,在S期作用可能尤为显著.  相似文献   

18.
The murine T cell hybridoma line which specifically binds antigen (ovalbumin) was established using a cell fusion technique with Sendai virus. Regional lymph node cells from ovalbumin (OVA) immunized C57BL/6 mice were fused with thymidine kinase deficient variant cells of the EL-4 cell line (originating from a thymoma of a C57BL/6 mouse). Approximately one hundred cell lines were established and the antigen binding activity was determined by rosette formation with OVA coated sheep red blood cells (SRBC). One hybridoma cell line, MMH-77, could form rosettes and this formation was specifically inhibited by the addition of free OVA. The ability of the cell line to form rosettes varied from one stage of the cell cycle to the other with the maximum ability in the S phase.  相似文献   

19.
20.
《Reproductive biology》2014,14(1):25-31
Granulosa cell tumors are rare, 3–7.6% of primary ovarian tumors, although with poor prognosis as the tumor-related mortality rate is 37.3%, with 80% of deaths occurring on recurrence. We have created a transgenic (TG) murine model for gonadal somatic cell tumors by expressing the powerful viral oncogene, Simian Virus 40 T-antigen (Tag), under the regulation of murine inhibin α-subunit 6 kb promoter (inhα/Tag). Gonadotropin dependent ovarian granulosa cell tumors were formed in females by the age of 5–6 months, with a 100% penetrance. We have successfully used the inhα/Tag model to test different treatment strategies for ovarian tumors. With a gene therapy trial in inhα/Tag mice crossbred with inhα/HSV-TK (herpes simplex virus thymidine kinase) mice (double TG), we proved the principle that targeted expression of HSV-TK gene in gonadal somatic cell tumors enabled tumor ablation by anti-herpes treatment. When we aimed at targeted destruction of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) expressing inhα/Tag tumor cells in vivo by a lytic peptide Hecate-CGβ conjugate, we could successfully kill the tumor cells, sparing the normal cells. We recently found high zona pellucida glycoprotein 3 (ZP3) expression in inhα/Tag granulosa cell tumors, as well as in human granulosa cell tumors. We tested the concept of treating the ovarian tumors of inhα/Tag mice by vaccination against the ectopically expressed ZP3. Immunotherapy with recombinant human (rh) ZP3 was highly successful with no objective side effects in inhα/Tag females, suggesting rhZP3 immunization as a novel strategy for the immunotherapy of ovarian granulosa cell tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号