首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Organogenesis》2013,9(3):289-298
A recent paper demonstrated that decellularized extracellular matrix (DECM) deposited by synovium-derived stem cells (SDSCs), especially from fetal donors, could rejuvenate human adult SDSCs in both proliferation and chondrogenic potential, in which expanded cells and corresponding culture substrate (such as DECM) were found to share a mutual reaction in both elasticity and protein profiles (see ref. 1 Li J, Hansen K, Zhang Y, Dong C, Dinu C, Dzieciatkowska M, Pei M. Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials 2014; 35:642-53; PMID: 24148243; http://dx.doi.org/10.1016/j.biomaterials.2013.09.099[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). It seems that young DECM may assist in the development of culture strategies that optimize proliferation and maintain “stemness” of mesenchymal stem cells (MSCs), helping to overcome one of the primary difficulties in MSC-based regenerative therapies. In this paper, the effects of age on the proliferative capacity and differentiation potential of MSCs are reviewed, along with the ability of DECM from young cells to rejuvenate old cells. In an effort to highlight some of the potential molecular mechanisms responsible for this phenomenon, we discuss age-related changes to extracellular matrix (ECM)'s physical properties and chemical composition.  相似文献   

3.
Reliable control over the process of cell differentiation is a major challenge in moving stem cell-based therapies forward. The composition of the extracellular matrix (ECM) is known to play an important role in modulating differentiation. We have developed a system to encapsulate adult human mesenchymal stem cells (hMSC) within spherical three-dimensional (3D) microenvironments consisting of a defined mixture of collagen Type I and agarose polymers. These protein-based beads were produced by emulsification of liquid hMSC-matrix suspensions in a silicone fluid phase and subsequent gelation to form hydrogel beads, which were collected by centrifugation and placed in culture. Bead size and size distribution could be varied by changing the encapsulation parameters (impeller speed and blade separation), and beads in the range of 30-150 microns in diameter were reliably produced. Collagen concentrations up to 40% (wt/wt) could be incorporated into the bead matrix. Visible light and fluorescence microscopy confirmed that the collagen matrix was uniformly distributed throughout the beads. Cell viability post-encapsulation was in the range of 75-90% for all bead formulations (similar to control slab gels) and remained at this level for 8 days in culture. Fluorescent staining of the actin cytoskeleton revealed that hMSC spreading increased with increasing collagen concentration. This system of producing 3D microenvironments of defined matrix composition therefore offers a way to control cell-matrix interactions and thereby guide hMSC differentiation. The bead format allows the use of small amounts of matrix proteins, and such beads can potentially be used as a cell delivery vehicle in tissue repair applications.  相似文献   

4.
Extracellular matrix (ECM) hydrogels are used as scaffolds to facilitate the repair and reconstruction of tissues. This study aimed to optimize the decellularization process of porcine skeletal muscle ECM and to formulate a matrix hydrogel scaffold. Five multi‐step methods (methods A–E) were used to generate acellular ECM from porcine skeletal muscle [rinsing in SDS, trypsin, ethylenediaminetetraacetic acid (EDTA), Triton X‐100 and/or sodium deoxycholate at 4–37°C]. The resulting ECM was evaluated using haematoxylin and eosin, 4‐6‐diamidino‐2‐phenylindole (DAPI) staining, and DNA quantification. Acellular matrix was dissolved in pepsin and gelled at 37°C. Hydrogel response to temperature was observed in vivo and in vitro. ECM components were assessed by Masson, Sirius red, and alcian blue staining, and total protein content. Acellular porcine skeletal muscle exhibited a uniform translucent white appearance. No intact nuclear residue was detected by haematoxylin and eosin staining, while DAPI staining showed a few nuclei in the matrixes produced by methods B, C, and D. Method A generated a gel that was too thin for gelation. However, the matrix obtained by rinsing in 0.2% trypsin/0.1% EDTA, 0.5% Triton X‐100, and 1% Triton X‐100/0.2% sodium deoxycholate was nuclei‐free and produced a viscous solution that formed a structurally stable white jelly‐like hydrogel. The residual DNA content of this solution was 49.37 ± 0.72 ng/mg, significantly less than in fresh skeletal muscle, and decreased to 19.22 ± 0.85 ng/mg after gelation (P < 0.05). The acellular matrix was rich in collagen and glycosaminoglycan, with a total protein concentration of 64.8 ± 6.9%. An acellular ECM hydrogel from porcine skeletal muscle was efficiently produced.  相似文献   

5.
闫伽宁  胥义 《生物工程学报》2021,37(11):4024-4035
组织器官脱细胞后制备成的脱细胞基质 (Decellularized extracellular matrix,dECM) 含有许多蛋白质和生长因子,不仅能够为细胞提供三维支架还能够调控细胞再生,是目前最具有生物结构的生物材料。3D生物打印可以层层打印dECM和自体细胞的组合,构建载细胞组织结构。文中综述了不同来源的组织器官脱细胞基质生物墨水制备方法,包括脱细胞、交联等,以及脱细胞基质生物墨水在生物打印中的应用,并展望了其未来的应用前景。  相似文献   

6.
Liver tissue engineering as a therapeutic option for restoring of damaged liver function has a special focus on using native decellularized liver matrix, but there are limitations such as the shortage of liver donor. Therefore, an appropriate alternative scaffold is needed to circumvent the donor shortage. This study was designed to evaluate hepatic differentiation of human induced pluripotent stem cells (hiPSCs) in decellularized Wharton's jelly (WJ) matrix as an alternative for native liver matrix. WJ matrices were treated with a series of detergents for decellularization. Then hiPSCs were seeded into decellularized WJ scaffold (DWJS) for hepatic differentiation by a defined induction protocol. The DNA quantitative assay and histological evaluation showed that cellular and nuclear materials were efficiently removed and the composition of extracellular matrix was maintained. In DWJS, hiPSCs-derived hepatocyte-like cells (hiPSCs-Heps) efficiently entered into the differentiation phase (G1) and gradually took a polygonal shape, a typical shape of hepatocytes. The expression of hepatic-associated genes (albumin, TAT, Cytokeratin19, and Cyp7A1), albumin and urea secretion in hiPSCs-Heps cultured into DWJS was significantly higher than those cultured in the culture plates (2D). Altogether, our results suggest that DWJS could provide a proper microenvironment that efficiently promotes hepatic differentiation of hiPSCs.  相似文献   

7.
Mesenchymal stem cells (MSCs) respond to a variety of differentiation signal provided by their local environments. A large portion of these signals originate from the extracellular matrix (ECM). At the same time, MSCs secrete various matrix‐altering agents, including proteases, that alter ECM‐encoded differentiation signals. Here we investigated the interactions between MSC and ECM produced by endothelial cells (EC‐matrix), focusing not only on the differentiation signals provided by EC‐matrix, but also on MSC‐alteration of these signals and the resultant affects on MSC differentiation. MSCs were cultured on EC‐matrix modified in one of three distinct ways. First, MSCs cultured on native EC‐matrix underwent endothelial cell (EC) differentiation early during the culture period and smooth muscle cell (SMC) differentiation at later time points. Second, MSCs cultured on crosslinked EC‐matrix, which is resistant to MSC modification, differentiated towards an EC lineage only. Third, MSCs cultured on EC‐matrix pre‐modified by MSCs underwent SMC‐differentiation only. These MSC‐induced matrix alterations were found to deplete the factors responsible for EC‐differentiation, yet activate the SMC‐differentiation factors. In conclusion, our results demonstrate that the EC‐matrix contains factors that support MSC differentiation into both ECs and SMCs, and that these factors are modified by MSC‐secreted agents. By analyzing the framework by which EC‐matrix regulates differentiation in MSCs, we have uncovered evidence of a feedback system in which MSCs are able to alter the very matrix signals acting upon them. J. Cell. Biochem. 107: 706–713, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

8.
《Cytotherapy》2014,16(12):1643-1655
Background aimsOsteoporosis (OP) is characterized by a reduction in bone quality, which is associated with inadequacies in bone marrow mesenchymal stromal cells (BMSCs). As an alternative cell source to BMSCs, adipose-derived stem cells (ASCs) have been investigated for bone repair because of their osteogenic potential and self-renewal capability. Nevertheless, whether autologous ASCs can be used to promote bone regeneration under osteoporotic conditions has not been elucidated.MethodsThe OP rabbit model was established by means of bilateral ovariectomy (OVX). Both BMSCs and ASCs were harvested from OVX rabbits and expanded in vitro. The effects of osteogenic-induced ASCs on the in vitro adipogenic and osteogenic capabilities of BMSCs were evaluated. Autologous ASCs were then encapsulated by calcium alginate gel and transplanted into the distal femurs of OVX rabbits (n = 12). Hydrogel without loading cells was injected into the contralateral femurs as a control. Animals were killed for investigation at 12 weeks after transplantation.ResultsOsteogenic-induced ASCs were able to promote osteogenesis and inhibit adipogenesis of osteoporotic BMSCs through activation of the bone morphogenetic protein 2/bone morphogenetic protein receptor type IB signal pathway. Local bone mineral density began to increase at 8 weeks after ASC transplantation (P < 0.05). At 12 weeks, micro–computed tomography and histological evaluation revealed more new bone formation in the cell-treated femurs than in the control group (P < 0.05).ConclusionsThis study demonstrated that ASCs could stimulate proliferation and osteogenic differentiation of BMSCs in vitro and enhance bone regeneration in vivo, which suggests that autologous osteogenic-induced ASCs might be useful to alleviate OP temporally.  相似文献   

9.
In recent years, induced pluripotent stem cells (iPSCs) have been considered as a promising approach in the field of regenerative medicine. iPSCs can be generated from patients’ somatic cells and possess the potential to differentiate, under proper conditions, into any cell type. However, the clinical application of iPS cells is restricted because of their tumorigenic potential. Recent studies have indicated that stem cells exert their therapeutic benefit via a paracrine mechanism, and extracellular vesicles have been demonstrated that play a critical role in this paracrine mechanism. Due to lower immunogenicity, easier management, and presenting no risk of tumor formation, in recent years, researchers turned attention to exosomes as potential alternatives to whole-cell therapy. Application of exosomes derived from iPSCs and their derived precursor provides a promising approach for personalized regenerative medicine. This study reviews the physiological functions of extracellular vesicles and discusses their potential therapeutic benefit in regenerative medicine.  相似文献   

10.
Menisci play a crucial role in weight distribution, load bearing, shock absorption, lubrication, and nutrition of articular cartilage within the knee joint. Damage to the meniscus typically does not heal spontaneously due to its partial avascular nature. Partial or complete meniscectomy is a common clinical treatment of the defective meniscus. However, this procedure ultimately leads to osteoarthritis due to increased mechanical stress to the articular cartilage. Meniscus tissue engineering offers a promising solution for partial or complete meniscus deficiency. Mesenchymal stem cells (MSC) have the potential to differentiate into meniscal fibrochondrocyte as well as deliver trophic effects to the differentiated cells. This study tested the feasibility of using MSC co-cultured with mature meniscal cells (MC) for meniscus tissue engineering. Structured cell pellets were created using MC and MSC at varying ratios (100:0, 75:25, 50:50, 25:75, and 0:100) and cultured with or without transforming growth factor-beta 3 supplemented chondrogenic media for 21 days. The meniscal and hypertrophic gene expression, gross appearance and structure of the pellets, meniscus extracellular matrix (ECM), histology and immunohistochemistry of proteoglycan and collagen were evaluated. Co-culture of MC with MSC at 75:25 demonstrated highest levels of collagen type I and glycosaminoglycans (GAG) production, as well as the lowest levels of hypertrophic genes, such as COL10A1 and MMP13. All co-culture conditions showed better meniscus ECM production and hypertrophic inhibition as compared to MSC culture alone. The collagen fiber bundles observed in the co-cultures are important to produce heterogenic ECM structure of meniscus. In conclusion, co-culturing MC and MSC is a feasible and efficient approach to engineer meniscus tissue with enhanced ECM production without hypertrophy.  相似文献   

11.
Human mesenchymal stem or stromal cell (hMSC) therapies have promise across a wide range of diseases. However, inefficient cell delivery and low cell survival at injury sites reduce efficacy and are the major barriers in hMSC‐based therapy. Formation of three‐dimensional (3D) hMSC aggregates has been found to activate hMSC functions from enhancing secretion of therapeutic factors for improving cell migration and survival. As the stromal cells in bone marrow, hMSCs are significant sources of extracellular matrix (ECM) proteins and growth factors, which form an interactive microenvironment to influence hMSC fate via paracrine and autocrine actions. To date, however, the impact of the extracellular microenvironment on hMSC properties in the aggregates remains unknown. In the present study, we investigated the role of endogenous ECM matrices on hMSC aggregate formation and survival under ischemic stress. The results demonstrated that the preservation of endogenous ECM in the aggregates formed by thermal lifting (termed TLAs) as opposed to the aggregates formed by enzymatically detached hMSCs (termed EDAs) enhanced cell proliferation, multilineage potential, and survival under ischemic stress. The improved cell proliferation and viability in the TLAs is attributed to the incorporation of endogenous ECM proteins in the TLAs and their promitotic and antioxidant properties. The results demonstrate a novel method for the formation of hMSC aggregates via thermal responsive surface and highlight the significant contribution of the ECM in preserving hMSC properties in the 3D aggregates. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 441–451, 2013  相似文献   

12.
13.
Stem cells reside in specialized niches in vivo. Specific factors, including the extracellular matrix (ECM), in these niches are directly responsible for maintaining the stem cell population. During development, components of the stem cell microenvironment also control differentiation with precise spatial and temporal organization. The stem cell microenvironment is dynamically regulated by the cellular component, including stem cells themselves. Thus, a mechanism exists whereby stem cells modify the ECM, which in turn affects the fate of the stem cell. In this study, we investigated whether the type of ECM initially adsorbed to the culture substrate can influence the composition of the ECM deposited by human embryonic stem cells (hESCs) differentiating in embryoid bodies, and whether different ECM composition and deposition profiles elicit distinct differentiation fates. We have shown that the initial ECM environment hESCs are exposed to affects the fate decisions of those cells and that this initial ECM environment is constantly modified during the differentiation process. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:212–219, 2015  相似文献   

14.
15.
Loss of cartilaginous phenotype during in vitro expansion culture of chondrocytes is a major barrier to the application of chondrocytes for tissue engineering. In previous study, we showed that dedifferentiation of chondrocytes during the passage culture was delayed by matrices formed by primary chondrocytes (P0‐ECM). In this study, we investigated bovine chondrocyte functions when being cultured on isolated extracellular matrix (ECM) protein‐coated substrata and P0‐ECM. Low chondrocyte attachment was observed on aggrecan‐coated substratum and P0‐ECM. Cell proliferation on aggrecan‐ and type II collagen/aggrecan‐coated substrata and P0‐ECM was lower than that on the other ECM protein (type I collagen and type II collagen)‐coated substrata. When chondrocytes were subcultured on aggrecan‐coated substratum, decline of cartilaginous gene expression was delayed, which was similar to the cells subcultured on P0‐ECM. These results indicate that aggrecan plays an important role in the regulation of chondrocyte functions and P0‐ECM may be a good experimental control for investigating the role of each ECM protein in cartilage ECM. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1331–1336, 2013  相似文献   

16.
《Cell Stem Cell》2023,30(2):219-238.e14
  1. Download : Download high-res image (218KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
干细胞在体外特定培养条件下可以被诱导分化成具有不同体细胞表型的细胞。除了通过不同培养条件进行体外诱导分化的方法外,用成熟体细胞与干细胞共培养同样可以诱导干细胞定向分化。以下首先简述了脂肪干细胞 (Adipose-derived stem cells,ADSCs) 的来源及其标志,然后重点就ADSCs的不同培养方法、诱导分化及最新的临床应用进行阐述,包括药物及化学诱导培养、体细胞与ADSCs二维、三维共培养等,最后提出ADSCs的问题所在并对此技术进行展望。  相似文献   

19.
Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single-step bioprocess for ES cell-derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 +/- 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell-derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell-derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield.  相似文献   

20.
Effects of boron derivatives on extracellular matrix formation   总被引:1,自引:0,他引:1  
Boric acid solution (3%) dramatically improves wound healing through action on the extracellular matrix, a finding that has been obtained in vitro. Consequently, investigations are presently underway to produce boronated compounds having a therapeutical effectiveness similar to that of boric acid. On the basis of experimental results obtained with boric acid, we examined the effects of boron derivatives on extracellular matrix formation and degradation and analyzed their potential toxicity by using two biological models (chick embryo cartilage and human fibroblasts). The four boron derivatives tested in this study (triethanolamine borate; N-diethyl-phosphoramidate-propylboronique acid; 2,2 dimethylhexyl-1,3-propanediol-aminopropylboronate and 1,2 propanediol-aminopropylboronate) mimicked the effects of boric acid. They induced a decrease of intracellular concentrations in extracellular matrix macromolecules (proteoglycans, proteins)-associated with an increase of their release in culture medium and stimulated the activity of intra- and extracellular proteases. Similarly to boric acid, these actions occurred after exposure of the cells to concentrations of all boron derivatives without apparent toxic effects. The compounds were found to be more toxic than boric acid itself when concentrations were calculated according to their molecular weight. Nevertheless, these in vitro preliminary results demonstrate effects of boron derivatives that may be of therapeutic benefit in wound repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号