首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse embryonic stem cell (ESC) lines, and more recently human ESC lines, have become valuable tools for studying early mammalian development. Increasing interest in ESCs and their differentiated progeny in drug discovery and as potential therapeutic agents has highlighted the fact that current two‐dimensional (2D) static culturing techniques are inadequate for large‐scale production. The culture of mammalian cells in three‐dimensional (3D) agitated systems has been shown to overcome many of the restrictions of 2D and is therefore likely to be effective for ESC proliferation. Using murine ESCs as our initial model, we investigated the effectiveness of different 3D culture environments for the expansion of pluripotent ESCs. Solohill Collagen, Solohill FACT, and Cultispher‐S microcarriers were employed and used in conjunction with stirred bioreactors. Initial seeding parameters, including cell number and agitation conditions, were found to be critical in promoting attachment to microcarriers and minimizing the size of aggregates formed. While all microcarriers supported the growth of undifferentiated mESCs, Cultispher‐S out‐performed the Solohill microcarriers. When cultured for successive passages on Cultispher‐S microcarriers, mESCs maintained their pluripotency, demonstrated by self‐renewal, expression of pluripotency markers and the ability to undergo multi‐lineage differentiation. When these optimized conditions were applied to unweaned human ESCs, Cultispher‐S microcarriers supported the growth of hESCs that retained expression of pluripotency markers including SSEA4, Tra‐1–60, NANOG, and OCT‐4. Our study highlights the importance of optimization of initial seeding parameters and provides proof‐of‐concept data demonstrating the utility of microcarriers and bioreactors for the expansion of hESCs. Biotechnol. Bioeng. 2010;107:683–695. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Feeder cells are usually used in culturing embryonic stem cells (ESCs) to maintain their undifferentiated and pluripotent status. To test whether mouse embryonic stem cells (mESCs) may be a source of feeder cells to support their own growth, 48 fibroblast-like cell lines were isolated from the same mouse embryoid bodies (mEBs) at three phases (10th day, 15th day, 20th day), and five of them, mostly derived from 15th day mEBs, were capable of maintaining mESCs in an undifferentiated and pluripotent state over 10 passages, even up to passage 20. mESCs cultured on the feeder system derived from these five cell lines expressed alkaline phosphatase and specific mESCs markers, including SSEA-1, Oct-4, Nanog, and formed mEBs in vitro and teratomas in vivo. These results suggest that mEB-derived fibroblasts (mEB-dFs) could serve as feeder cells that could sustain the undifferentiated growth and pluripotency of their own mESCs in culture. This study not only provides a novel feeder system for mESCs culture, avoiding a lot of disadvantages of commonly used mouse embryonic fibroblasts as feeder cells, but also indicates that fibroblast-like cells derived from mESCs take on different functions. Investigating the molecular mechanisms of these different functional fibroblast-like cells to act on mESCs will contribute to the understanding of the mechanisms of mESCs self-renewal.  相似文献   

3.
Large numbers of cells will be required for successful embryonic stem cell (ESC)-based cellular therapies or drug discovery, thus raising the need to develop scaled-up bioprocesses for production of ESCs and their derived progeny. Traditionally, ESCs have been propagated in adherent cultures in static flasks on fibroblasts layers in serum-containing medium. Direct translation of two-dimensional flatbed cultures to large-scale production of the quantities of cells required for therapy simply by increasing the number of dishes or flasks is not practical or economical. Here, we describe successful scaled-up production of ESCs on microcarriers in a stirred culture system in a serum-free medium. Cells expanded on CultiSpher S, Cytodex 3, and Collagen microcarriers showed superior cell-fold expansions of 439, 193, and 68, respectively, without excessive agglomeration, compared with 27 in static culture. In addition, the ESCs maintained their pluripotency after long-term culture (28 days) in serum-free medium. This is the first time mESCs have been cultured on microcarriers without prior exposure to serum and/or fibroblasts, while also eliminating the excessive agglomeration plaguing earlier studies. These protocols provide an economical, practical, serum-free means for expanding ESCs in a stirred suspension bioprocess.  相似文献   

4.
Increasing attention has been drawn towards pluripotent embryonic stem cells (ESCs) and their potential use as the primary material in various tissue engineering applications. Successful clinical implementation of this technology would require a quality controlled reproducible culture system for the expansion of the cells to be used in the generation of functional tissues. Recently, we showed that suspension bioreactors could be used in the regulated large-scale expansion of highly pluripotent murine ESCs. The current study illustrates that these bioreactor protocols can be adapted for long term culture and that murine ESC cultures remain highly undifferentiated, when serially passaged in suspension bioreactors for extended periods. Flow cytometry analysis and gene expression profiles of several pluripotency markers, in addition to colony and embryoid body (EB) formation tests were conducted at the start and end of the experiment and all showed that the ESC cultures remained highly undifferentiated over extended culture time in suspension. In vivo teratoma formation and in vitro differentiation into neural, cardiomyocyte, osteoblast and chondrocyte lineages, performed at the end of the long term culture, further supported the presence of functional and undifferentiated ESCs in the expanded population. Overall, this system enables the controlled expansion of highly pluripotent murine ESC populations.  相似文献   

5.
6.
Embryonic stem cells (ESCs) possess two unique characteristics: self‐renewal and pluripotency. In this study, roles of voltage‐gated potassium channels (Kv) in maintaining mouse (m) ESC characteristics were investigated. Tetraethylammonium (TEA+), a Kv blocker, attenuated cell proliferation in a concentration‐dependent manner. Possible reasons for this attenuation, including cytotoxicity, cell cycle arrest and differentiation, were examined. Blocking Kv did not change the viability of mESCs. Interestingly, Kv inhibition increased the proportion of cells in G0/G1 phase and decreased that in S phase. This change in cell cycle distribution can be attributed to cell cycle arrest or differentiation. Loss of pluripotency as determined at both molecular and functional levels was detected in mESCs with Kv blockade, indicating that Kv inhibition in undifferentiated mESCs directs cells to differentiate instead of to self‐renew and progress through the cell cycle. Membrane potential measurement revealed that Kv blockade led to depolarization, consistent with the role of Kv as the key determinant of membrane potential. The present results suggest that membrane potential changes may act as a “switch” for ESCs to decide whether to proliferate or to differentiate: hyperpolarization at G1 phase would favor ESCs to enter S phase while depolarization would favor ESCs to differentiate. Consistent with this notion, S‐phase‐synchronized mESCs were found to be more hyperpolarized than G0/G1‐phase‐synchronized mESCs. Moreover, when mESCs differentiated, the differentiation derivatives depolarized at the initial stage of differentiation. This investigation is the first study to provide evidence that Kv and membrane potential affect the fate determination of ESCs. J. Cell. Physiol. 224:165–177, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The use of unrestricted somatic stem cells (USSCs) holds great promise for future clinical applications. Conventionally, mouse embryonic fibroblasts (MEFs) or other animal‐based feeder layers are used to support embryonic stem cell (ESC) growth; the use of such feeder cells increases the risk of retroviral and other pathogenic infection in clinical trials. Implementation of a human‐based feeder layer, such as hUSSCs that are isolated from human sources, lowers such risks. Isolated cord blood USSCs derived from various donors were used as a novel, supportive feeder layer for growth of C4mES cells (Royan C4 ESCs). Complete cellular characterization using immunocytochemical and flow cytometric methods were performed on murine ESCs (mESCs) and hUSSCs. mESCs cultured on hUSSCs showed similar cellular morphology and presented the same cell markers of undifferentiated mESC as would have been observed in mESCs grown on MEFs. Our data revealed these cells had negative expression of Stat3, Sox2, and Fgf4 genes while showing positive expression for Pou5f1, Nanog, Rex1, Brachyury, Lif, Lifr, Tert, B2m, and Bmp4 genes. Moreover, mESCs cultured on hUSSCs exhibited proven differentiation potential to germ cell layers showing normal karyotype. The major advantage of hUSSCs is their ability to be continuously cultured for at least 50 passages. We have also found that hUSSCs have the potential to provide ESC support from the early moments of isolation. Further study of hUSSC as a novel human feeder layer may lead to their incorporation into clinical methods, making them a vital part of the application of human ESCs in clinical cell therapy. Mol. Reprod. Dev. 79: 709–718, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
Here, we present evidence that the tumor-like growth of mouse embryonic stem cells (mESCs) is suppressed by short-term serum-free culture, which is reversed by pharmacological inhibition of Gsk3β. Mouse ESCs maintained under standard conditions using fetal bovine serum (FBS) were cultured in a uniquely formulated chemically-defined serum-free (CDSF) medium, namely ESF7, for three passages before being subcutaneously transplanted into immunocompromised mice. Surprisingly, the mESCs failed to produce teratomas for up to six months, whereas mESCs maintained under standard conditions generated well-developed teratomas in five weeks. Mouse ESCs cultured under CDSF conditions maintained the expression of Oct3/4, Nanog, Sox2 and SSEA1, and differentiated into germ cells in vivo. In addition, when mESCs were cultured under CDSF conditions supplemented with FBS, or when the cells were cultured under CDSF conditions followed by standard culture conditions, they consistently developed into teratomas. Thus, these results validate that the pluripotency of mESCs was not compromised by CDSF conditions. Mouse ESCs cultured under CDSF conditions proliferated significantly more slowly than mESCs cultured under standard conditions, and were reminiscent of Eras-null mESCs. In fact, their slower proliferation was accompanied by the downregulation of Eras and c-Myc, which regulate the tumor-like growth of mESCs. Remarkably, when mESCs were cultured under CDSF conditions supplemented with a pharmacological inhibitor of Gsk3β, they efficiently proliferated and developed into teratomas without upregulation of Eras and c-Myc, whereas mESCs cultured under standard conditions expressed Eras and c-Myc. Although the role of Gsk3β in the self-renewal of ESCs has been established, it is suggested with these data that Gsk3β governs the tumor-like growth of mESCs by means of a mechanism different from the one to support the pluripotency of ESCs.  相似文献   

10.
11.

Background

High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement.

Methodology/Principal Findings

To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality ‘naïve’ mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency (‘stemness’) genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment.

Conclusions/Significance

The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization.  相似文献   

12.

Background

REST is abundantly expressed in mouse embryonic stem cells (ESCs). Many genome-wide analyses have found REST to be an integral part of the ESC pluripotency network. However, experimental systems have produced contradictory findings: (1) REST is required for the maintenance of ESC pluripotency and loss of REST causes increased expression of differentiation markers, (2) REST is not required for the maintenance of ESC pluripotency and loss of REST does not change expression of differentiation markers, and (3) REST is not required for the maintenance of ESC pluripotency but loss of REST causes decreased expression of differentiation markers. These reports highlight gaps in our knowledge of the ESC network.

Methods

Employing biochemical and genome-wide analyses of various culture conditions and ESC lines, we have attempted to resolve some of the discrepancies in the literature.

Results

We show that Rest+/− and Rest−/− AB-1 mutant ESCs, which did not exhibit a role of REST in ESC pluripotency when cultured in the presence of feeder cells, did show impaired self-renewal when compared with the parental cells under feeder-free culture conditions, but only in early passage cells. In late passage cells, both Rest+/− and Rest−/− AB-1 ESCs restored pluripotency, suggesting a passage and culture condition-dependent response. Genome-wide analysis followed by biochemical validation supported this response and further indicated that the restoration of pluripotency was associated by increased expression of the ESC pluripotency factors. E14Tg2a.4 ESCs with REST-knockdown, which earlier showed a REST-dependent pluripotency when cultured under feeder-free conditions, as well as Rest−/− AB-1 ESCs, showed no REST-dependent pluripotency when cultured in the presence of either feeder cells or laminin, indicating that extracellular matrix components can rescue REST''s role in ESC pluripotency.

Conclusions

REST regulates ESC pluripotency in culture condition- and ESC line-dependent fashion and ESC pluripotency needs to be evaluated in a context dependent manner.  相似文献   

13.
Monocytic lineage cells (monocytes, macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3×106±0.3×106 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5–6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery.  相似文献   

14.
Maintaining the self-renewal of embryonic stem cells (ESCs) could be achieved by activating the extrinsic signaling, i.e., the use of leukemia inhibitory factor (LIF), or blocking the intrinsic differentiation pathways, i.e., the use of GSK3 and MEK inhibitors (2i). Here we found that even in medium supplemented with LIF, mESCs still tend to differentiate toward meso-endoderm lineages after long-term culture and the culture spontaneously secretes vascular endothelial growth factors (VEGFs). Blocking VEGF signaling with sunitinib, an anti-cancer drug and a receptor tyrosine kinase (RTK) inhibitor mainly targeting VEGF receptors (VEGFRs), is capable of maintaining the mESCs in the undifferentiated state without the need for feeder cells or LIF. Sunitinib facilitates the derivation of mESCs from blastocysts, and the mESCs maintained in sunitinib-containing medium remain pluripotent and are able to contribute to chimeric mice. Sunitinib also promotes iPSC generation from MEFs with only Oct4. Knocking down VEGFR2 or blocking it with neutralizing antibody mimicks the effect of sunitinib, indicating that blocking VEGF/VEGFR signaling is indeed beneficial to the self-renewal of mESCs. We also found that hypoxia-inducible factor alpha (HIF1α) and endoplasmic reticulum (ER) stress are involved in the production of VEGF in mESCs. Blocking both pathways inhibits the expression of VEGF and prevents spontaneous differentiation of mESCs. Interestingly, LIF may also exert its effect by downregulating HIF1α and ER stress pathways and subsequent VEGF expression. These results indicate the existence of an intrinsic differentiation pathway in mESCs by activating the autocrine VEGF signaling. Blocking VEGF signaling with sunitinib or other small molecules help to maintain the mESCs in the ground state of pluripotency.  相似文献   

15.
16.
The Tet family of enzymes (Tet1/2/3) converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Mouse embryonic stem cells (mESCs) highly express Tet1 and have an elevated level of 5hmC. Tet1 has been implicated in ESC maintenance and lineage specification in?vitro but its precise function in development is not well defined. To establish the role of Tet1 in pluripotency and development, we have generated Tet1 mutant mESCs and mice. Tet1(-/-) ESCs have reduced levels of 5hmC and subtle changes in global gene expression, and are pluripotent and support development of live-born mice in tetraploid complementation assay, but display skewed differentiation toward trophectoderm in?vitro. Tet1 mutant mice are viable, fertile, and grossly normal, though some mutant mice have a slightly smaller body size at birth. Our data suggest that Tet1 loss leading to a partial reduction in 5hmC levels does not affect pluripotency in ESCs and is compatible with embryonic and postnatal development.  相似文献   

17.
Embryonic stem cells (ESCs) possess an intrinsic self-renewal ability and can differentiate into numerous types of functional tissue cells; however, whether ESCs can differentiate toward the odontogenic lineage is still unknown. In this study, we developed an efficient culture strategy to induce the differentiation of murine ESCs (mESCs) into dental epithelial cells. By culturing mESCs in ameloblasts serum-free conditioned medium (ASF-CM), we could induce their differentiation toward dental epithelial cell lineages; however, similar experiments with the tooth germ cell-conditioned medium (TGC-CM) did not yield effective results. After culturing the cells for 14 days in the differentiation-inducing media, the expression of ameloblast-specific proteins such as cytokeratin (CK)14, ameloblastin (AMBN), and amelogenin (AMGN) was markedly higher in mESCs obtained with embryoid body (EB) formation than in mESCs obtained without EB formation. We observed that immunocompromised mice implanted with induced murine EBs (mEBs) showed tissue regenerative capacity and produced odontogenic epithelial-like structures, whereas those implanted with mSCE monolayer cells mainly formed connective tissues. Thus, for the first time, we report that ASF-CM provides a suitable microenvironment for inducing mESC differentiation along the odontogenic epithelial cell lineage. This result has important implications for tooth tissue engineering.  相似文献   

18.
Mouse embryonic stem cells (mESCs) exhibit self-renewal and pluripotency, can differentiate into all three germ layers, and serve as an essential model in stem cell research and for potential clinical application in regenerative medicine. Melanoma-associated antigen A2 (MAGEA2) is not expressed in normal somatic cells but rather in different types of cancer, especially in undifferentiated cells, such as in the testis, differentiating cells, and ESCs. However, the role of MAGEA2 in mESCs remains to be clarified. Accordingly, in this study, we examined the expression and functions of MAGEA2 in mESCs. MAGEA2 messenger RNA (mRNA) expression was decreased during mESCs differentiation. MAGEA2 function was then evaluated in knockdown mESC. MAGEA2 knockdown resulted in decreased pluripotency marker gene expression in mESCs consequent to increased Erk1/2 phosphorylation. Decreased MAGEA2 expression inhibited mESC proliferation via S phase cell cycle arrest with a subsequent decrease in cell cycle-associated genes Cdk1, Cdk2, Cyclin A1, Cyclin D1, and Cdc25a. Apoptotic mESCs markedly increased along with cleaved forms of caspases 3, 6, and 7 and PARP expression, confirming caspase-dependent apoptosis. MAGEA2 knockdown significantly decreased embryoid body size in vitro when cells were differentiated naturally and teratoma size in vivo, concomitant with decreased ectoderm marker gene expression. These findings suggested that MAGEA2 regulates ESC pluripotency, proliferation, cell cycle, apoptosis, and differentiation. The enhanced understanding of the regulatory mechanisms underlying diverse mESC characteristics will facilitate the clinical application of mESCs.  相似文献   

19.
微RNA(microRNA,miRNA)是一类约22nt的非编码小分子RNA,主要在转录后水平负调控基因表达,其在生物发商、疾病、肿瘤中行使着重要调控作用。胚胎干细胞(embryonic stem cell,ESC)具有发育的全能性,能分化出成体动物的所有组织和器官。研究和利用ESC是当前生物工程领域的热点之一。近年来,越来越多的研究表明,miRNA在ESC的自我更新、分化、命运决定等方面行使着重要的调控作用。其中,miR-290家簇是在鼠科动物ESC中特异且高表达的miRNA。本文综述了miR-290家簇在ESC中的表达、功能及其分子调控网络方面的研究进展。  相似文献   

20.
Huang J  Wang F  Okuka M  Liu N  Ji G  Ye X  Zuo B  Li M  Liang P  Ge WW  Tsibris JC  Keefe DL  Liu L 《Cell research》2011,21(5):779-792
Telomerase and telomeres are important for indefinite replication of stem cells. Recently, telomeres of somatic cells were found to be reprogrammed to elongate in induced pluripotent stem cells (iPSCs). The role of telomeres in developmental pluripotency in vivo of embryonic stem cells (ESCs) or iPSCs, however, has not been directly addressed. We show that ESCs with long telomeres exhibit authentic developmental pluripotency, as evidenced by generation of complete ESC pups as well as germline-competent chimeras, the most stringent tests available in rodents. ESCs with short telomeres show reduced teratoma formation and chimera production, and fail to generate complete ESC pups. Telomere lengths are highly correlated (r > 0.8) with the developmental pluripotency of ESCs. Short telomeres decrease the proliferative rate or capacity of ESCs, alter the expression of genes related to telomere epigenetics, down-regulate genes important for embryogenesis and disrupt germ cell differentiation. Moreover, iPSCs with longer telomeres generate chimeras with higher efficiency than those with short telomeres. Our data show that functional telomeres are essential for the developmental pluripotency of ESCs/iPSCs and suggest that telomere length may provide a valuable marker to evaluate stem cell pluripotency, particularly when the stringent tests are not feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号