首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Autophagy and apoptosis, which could be induced by common stimuli, play crucial roles in development and disease. The functional relationship between autophagy and apoptosis is complex, due to the dual effects of autophagy. In the Bombyx Bm-12 cells, 20-hydroxyecdysone (20E) treatment or starvation-induced cell death, with autophagy preceding apoptosis. In response to 20E or starvation, BmATG8 was rapidly cleaved and conjugated with PE to form BmATG8–PE; subsequently, BmATG5 and BmATG6 were cleaved into BmATG5-tN and BmATG6-C, respectively. Reduction of expression of BmAtg5 or BmAtg6 by RNAi decreased the proportion of cells undergoing both autophagy and apoptosis after 20E treatment or starvation. Overexpression of BmAtg5 or BmAtg6 induced autophagy but not apoptosis in the absence of the stimuli, but promoted both autophagy and apoptosis induced by 20E or starvation. Notably, overexpression of cleavage site-deleted BmAtg5 or BmAtg6 increased autophagy but not apoptosis induced by 20E or starvation, whereas overexpression of BmAtg5-tN and BmAtg6-C was able to directly trigger apoptosis or promote the induced apoptosis. In conclusion, being cleaved into BmATG5-tN and BmATG6-C, BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20E or starvation in Bombyx Bm-12 cells, reflecting that autophagy precedes apoptosis in the midgut during Bombyx metamorphosis.  相似文献   

2.
3.
Apoptosis and autophagy play crucial roles during Bombyx mori metamorphosis and in response to various adverse conditions, including starvation. Recently, calpain, one of the major intracellular proteases, has been reported to be involved in apoptosis and autophagy in mammals. BmATG5 and BmATG6 have been identified to mediate apoptosis following autophagy induced by 20‐hydroxyecdysone and starvation in B. mori. However, B. mori calpains and their functions remain unclear. In this study, phylogenetic analysis of calpains from B. mori, Drosophila melanogaster and Homo sapiens were performed and the results showed distinct close relationships of BmCalpain‐A/B with DmCalpain‐A/B, BmCalpain‐C with DmCalpain‐C, and BmCalpain‐7 with HsCalpain‐7. Then, the expression profiles of BmCalpains were analyzed by quantitative real‐time polymerase chain reaction, and results showed that expression of BmCalpain‐A/B, BmCalpain‐C and BmCalpain‐7 was significantly increased during B. mori metamorphosis and induced in the fat body and midgut of starved larvae, which is consistent with the expression profiles of BmAtg5, BmAtg6 and BmCaspase‐1. Moreover, the apoptosis‐associated cleavage of BmATG6 in Bm‐12 cells was significantly enhanced when BmCalpain‐A/B and BmCalpain‐7 were induced by starvation, and was partially inhibited by the inhibitor of either calpain or caspase, but completely inhibited when both types of inhibitors were applied together. Our results indicated that BmCalpains, including BmCalpain‐A/B, ‐C and ‐7, may be involved in autophagy and apoptosis during B. mori metamorphosis and after starvation, and may also contribute to the apoptosis‐associated cleavage of BmATG6.  相似文献   

4.
5.
6.
Macroautophagy (hereafter autophagy) is a cellular “self-eating” process that is implicated in many human cancers, where it can act to either promote or suppress tumorigenesis. However, the role of autophagy in regulation of inflammation during tumorigenesis remains unclear. Here we show that autophagy is induced in the epidermis by ultraviolet (UV) irradiation and autophagy gene Atg7 promoted UV-induced inflammation and skin tumorigenesis. Atg7 regulated UV-induced cytokine expression and secretion, and promoted Ptgs2/Cox-2 expression through both a CREB1/CREB-dependent cell autonomous mechanism and an IL1B/IL1β-dependent non-cell autonomous mechanism. Adding PGE2 increased UV-induced skin inflammation and tumorigenesis, reversing the epidermal phenotype in mice with Atg7 deletion in keratinocytes. Similar to ATG7 knockdown in human keratinocytes, ATG5 knockdown inhibited UVB-induced expression of PTGS2 and cytokines. Furthermore, ATG7 loss increased the activation of the AMPK pathway and the phosphorylation of CRTC1, and led to endoplasmic reticulum (ER) accumulation and reduction of ER stress. Inducing ER stress and inhibiting calcium influx into the ER by thapsigargin reverses the inflammation and tumorigenesis phenotype in mice with epidermal Atg7 deletion. Taken together, these findings demonstrate that deleting autophagy gene Atg7 leads to a suppression of carcinogen-induced protumorigenic inflammatory microenvironment and tumorigenesis of the epithelium.  相似文献   

7.
The function of macroautophagy/autophagy during tumor initiation or in established tumors can be highly distinct and context-dependent. To investigate the role of autophagy in gliomagenesis, we utilized a KRAS-driven glioblastoma mouse model in which autophagy is specifically disrupted via RNAi against Atg7, Atg13 or Ulk1. Inhibition of autophagy strongly reduced glioblastoma development, demonstrating its critical role in promoting tumor formation. Further supporting this finding is the observation that tumors originating from Atg7-shRNA injections escaped the knockdown effect and thereby still underwent functional autophagy. In vitro, autophagy inhibition suppressed the capacity of KRAS-expressing glial cells to form oncogenic colonies or to survive low serum conditions. Molecular analyses revealed that autophagy-inhibited glial cells were unable to maintain active growth signaling under growth-restrictive conditions and were prone to undergo senescence. Overall, these results demonstrate that autophagy is crucial for glioma initiation and growth, and is a promising therapeutic target for glioblastoma treatment.  相似文献   

8.
p62/Sequestosome-1 (p62/SQSTM1, hereafter referred to as p62) is a major adaptor that allows ubiquitinated proteins to be degraded by autophagy, and Atg8 homologs are required for p62-mediated autophagic degradation, but their relationship is still not understood in Lepidopteran insects. Here it is clearly demonstrated that the silkworm homolog of mammalian p62, Bombyx mori p62 (Bmp62), forms p62 bodies depending on its Phox and Bem1p (PB1) and ubiquitin-associated (UBA) domains. These two domains are associated with Bmp62 binding to ubiquitinated proteins to form the p62 bodies, and the UBA domain is essential for the binding, but Bmp62 still self-associates without the PB1 or UBA domain. The p62 bodies in Bombyx cells are enclosed by BmAtg9-containing membranes and degraded via autophagy. It is revealed that the interaction between the Bmp62 AIM motif and BmAtg8 is critical for the autophagic degradation of the p62 bodies. Intriguingly, we further demonstrate that lipidation of BmAtg8 is required for the Bmp62-mediated complete degradation of p62 bodies by autophagy. Our results should be useful in future studies of the autophagic mechanism in Lepidopteran insects.  相似文献   

9.
10.
Autophagy regulates cell survival (or cell death in several cases), whereas apoptosis regulates cell death. However, the relationship between autophagy and apoptosis and the regulative mechanism is unclear. We report that steroid hormone 20-hydroxyecdysone (20E) promotes switching from autophagy to apoptosis by increasing intracellular calcium levels in the midgut of the lepidopteran insect Helicoverpa armigera. Autophagy and apoptosis sequentially occurred during midgut programmed cell death under 20E regulation, in which lower concentrations of 20E induced microtubule-associated protein 1 light chain 3–phosphatidylethanolamine (LC3–II, also known as autophagy-related gene 8, ATG8) expression and autophagy. High concentrations of 20E induced cleavage of ATG5 to NtATG5 and pro-caspase-3 to active caspase-3, which led to a switch from autophagy to apoptosis. Blocking autophagy by knockdown of ATG5, ATG7, or ATG12, or with the autophagy inhibitor 3-methyladenine, inhibited 20E-induced autophagy and apoptosis. Blocking apoptosis by using the apoptosis inhibitor Ac-DEVD-CHO did not prevent 20E-induced autophagy, suggesting that apoptosis relies on autophagy. ATG5 knockdown resulted in abnormal pupation and delayed pupation time. High concentrations of 20E induced high levels of intracellular Ca2+, NtATG5, and active caspase-3, which mediated the switch from autophagy to apoptosis. Blocking 20E-mediated increase of cellular Ca2+ caused a decrease of NtATG5 and active caspase-3 and repressed the transformation from autophagy to apoptosis, thereby promoting cell survival. 20E induces an increase in the concentration of intracellular Ca2+, thereby switching autophagic cell survival to apoptotic cell death.  相似文献   

11.
12.
Toxin B (TcdB) is a major pathogenic factor of Clostridum difficile. However, the mechanism by which TcdB exerts its cytotoxic action in host cells is still not completely known. Herein, we report for the first time that TcdB induced autophagic cell death in cultured human colonocytes. The induction of autophagy was demonstrated by the increased levels of LC3‐II, formation of LC3+ autophagosomes, accumulation of acidic vesicular organelles and reduced levels of the autophagic substrate p62/SQSTM1. TcdB‐induced autophagy was also accompanied by the repression of phosphoinositide 3‐kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) complex 1 activity. Functionally, pharmacological inhibition of autophagy by wortmannin or chloroquine or knockdown of autophagy‐related genes Beclin 1, Atg5 and Atg7 attenuated TcdB‐induced cell death in colonocytes. Genetic ablation of Atg5, a gene required for autophagosome formation, also mitigated the cytotoxic effect of TcdB. In conclusion, our study demonstrated that autophagy serves as a pro‐death mechanism mediating the cytotoxic action of TcdB in colonocytes. This discovery suggested that blockade of autophagy might be a novel therapeutic strategy for C. difficile infection.  相似文献   

13.
Hepatocellular Carcinoma (HCC) is the most common type of primary liver cancer in adults and a leading cause of cancer-related deaths worldwide. Studies have shown that autophagy is significantly involved in carcinogenesis, in particular, driven by activated RAS signaling. Autophagy related 7 (Atg7) is a critical component for the formation of autophagosome and required for autophagy processes. We investigated the role of autophagy in RAS-driven tumorigenesis in the liver, via the knockdown of Atg7 in the model. Transposon vectors encoding short hairpin RNAs targeting Atg7 (Atg7 shRNA) were constructed. Inhibition of autophagy via Atg7 knockdown was tested in Hep3B cells cultured in nutrient-starved medium. Formation of autophagosome was suppressed in nutrient-starved Hep3B cells expressing Atg7 shRNA, demonstrating that it efficiently inhibited autophagy in HCC cells. Transposons encoding Atg7 shRNA were mixed with those expressing HRASG12V and p53 shRNA, and subsequently used for hydrodynamic injection to 5-week-old C57BL/6 mice. Tumorigenesis in livers induced by HRASG12V and p53 shRNA was significantly suppressed by Atg7 knockdown. The inhibition of autophagy led to a decreased proliferation of cancer cells, as determined by Ki-67 staining. Our data indicate that knockdown of Atg7 led to a significant decrease in tumorigenesis in a murine HCC model induced by activated RAS. Inhibition of autophagosome formation is expected to be a therapeutic option for liver cancer.  相似文献   

14.
《Autophagy》2013,9(10):1259-1260
Increasing evidence suggests that misfolded proteins and intracellular aggregates contribute to cardiac disease and heart failure. We wished to determine if autophagic induction by Atg7 is sufficient to reduce misfolded protein and aggregate content in protein misfolding-stressed cardiomyocytes. We used loss- and gain-of-function approaches in cultured cardiomyocytes to determine the effects of ATG7 knockdown and Atg7 overexpression in protein conformation-based toxicity induced by expression of a mutant aB crystallin (CryABR120G) known to cause human heart disease. We show that Atg7 induces basal autophagy and rescues the CryAB accumulation of misfolded proteins and aggregates in cardiomyocytes.  相似文献   

15.
《Autophagy》2013,9(9):1321-1333
Cerebral ischemia-reperfusion (I-R) is a complex pathological process. Although autophagy can be evoked by ischemia, its involvement in the reperfusion phase after ischemia and its contribution to the fate of neurons remains largely unknown. In the present investigation, we found that autophagy was activated in the reperfusion phase, as revealed in both mice with middle cerebral artery occlusion and oxygen-glucose deprived cortical neurons in culture. Interestingly, in contrast to that in permanent ischemia, inhibition of autophagy (by 3-methyladenine, bafilomycin A1, Atg7 knockdown or in atg5?/? MEF cells) in the reperfusion phase reinforced, rather than reduced, the brain and cell injury induced by I-R. Inhibition of autophagy either with 3-methyladenine or Atg7 knockdown enhanced the I-R-induced release of cytochrome c and the downstream activation of apoptosis. Moreover, MitoTracker Red-labeled neuronal mitochondria increasingly overlapped with GFP-LC3-labeled autophagosomes during reperfusion, suggesting the presence of mitophagy. The mitochondrial clearance in I-R was reversed by 3-methyladenine and Atg7 silencing, further suggesting that mitophagy underlies the neuroprotection by autophagy. In support, administration of the mitophagy inhibitor mdivi-1 in the reperfusion phase aggravated the ischemia-induced neuronal injury both in vivo and in vitro. PARK2 translocated to mitochondria during reperfusion and Park2 knockdown aggravated ischemia-induced neuronal cell death. In conclusion, the results indicated that autophagy plays different roles in cerebral ischemia and subsequent reperfusion. The protective role of autophagy during reperfusion may be attributable to mitophagy-related mitochondrial clearance and inhibition of downstream apoptosis. PARK2 may be involved in the mitophagy process.  相似文献   

16.
Previous studies have demonstrated that AMP‐activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc‐51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β‐guanidinopropionic acid (β‐GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β‐GPA and aging remains elusive. In this study, we hypothesized that feeding β‐GPA to adult Drosophila produces the lifespan extension via activation of AMPK‐dependent autophagy. It was found that dietary administration of β‐GPA at a concentration higher than 900 mm induced a significant extension of the lifespan of Drosophila melanogaster in repeated experiments. Furthermore, we found that Atg8 protein, the homolog of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) and a biomarker of autophagy in Drosophila, was significantly upregulated by β‐GPA treatment, indicating that autophagic activity plays a role in the effect of β‐GPA. On the other hand, when the expression of Atg5 protein, an essential protein for autophagy, was reduced by RNA interference (RNAi), the effect of β‐GPA on lifespan extension was abolished. Moreover, we found that AMPK was also involved in this process. β‐GPA treatment significantly elevated the expression of phospho‐T172‐AMPK levels, while inhibition of AMPK by either AMPK‐RNAi or compound C significantly attenuated the expression of autophagy‐related proteins and lifespan extension in Drosophila. Taken together, our results suggest that β‐GPA can induce an extension of the lifespan of Drosophila via AMPK‐Atg1‐autophagy signaling pathway.  相似文献   

17.
Astrocyte differentiation is essential for late embryonic brain development, and autophagy is active during this process. However, it is unknown whether and how autophagy regulates astrocyte differentiation. Here, we show that Atg5, which is necessary for autophagosome formation, regulates astrocyte differentiation. Atg5 deficiency represses the generation of astrocytes in vitro and in vivo. Conversely, Atg5 overexpression increases the number of astrocytes substantially. We show that Atg5 activates the JAK2‐STAT3 pathway by degrading the inhibitory protein SOCS2. The astrocyte differentiation defect caused by Atg5 loss can be rescued by human Atg5 overexpression, STAT3 overexpression, and SOCS2 knockdown. Together, these data demonstrate that Atg5 regulates astrocyte differentiation, with potential implications for brain disorders with autophagy deficiency.  相似文献   

18.
The TOR kinases are conserved negative regulators of autophagy in response to nutrient conditions, but the signaling mechanisms are poorly understood. Here we describe a complex containing the protein kinase Atg1 and the phosphoprotein Atg13 that functions as a critical component of this regulation in Drosophila. We show that knockout of Atg1 or Atg13 results in a similar, selective defect in autophagy in response to TOR inactivation. Atg1 physically interacts with TOR and Atg13 in vivo, and both Atg1 and Atg13 are phosphorylated in a nutrient-, TOR- and Atg1 kinase-dependent manner. In contrast to yeast, phosphorylation of Atg13 is greatest under autophagic conditions and does not preclude Atg1-Atg13 association. Atg13 stimulates both the autophagic activity of Atg1 and its inhibition of cell growth and TOR signaling, in part by disrupting the normal trafficking of TOR. In contrast to the effects of normal Atg13 levels, increased expression of Atg13 inhibits autophagosome expansion and recruitment of Atg8/LC3, potentially by decreasing the stability of Atg1 and facilitating its inhibitory phosphorylation by TOR. Atg1-Atg13 complexes thus function at multiple levels to mediate and adjust nutrient-dependent autophagic signaling.  相似文献   

19.
The molecular basis of chronic morphine exposure remains unknown. In this study, we hypothesized that macroautophagy/autophagy of dopaminergic neurons would mediate the alterations of neuronal dendritic morphology and behavioral responses induced by morphine. Chronic morphine exposure caused Atg5 (autophagy-related 5)- and Atg7 (autophagy-related 7)-dependent and dopaminergic neuron-specific autophagy resulting in decreased neuron dendritic spines and the onset of addictive behaviors. In cultured primary midbrain neurons, morphine treatment significantly reduced total dendritic length and complexity, and this effect could be reversed by knockdown of Atg5 or Atg7. Mice deficient for Atg5 or Atg7 specifically in the dopaminergic neurons were less sensitive to developing a morphine reward response, behavioral sensitization, analgesic tolerance and physical dependence compared to wild-type mice. Taken together, our findings suggested that the Atg5- and Atg7-dependent autophagy of dopaminergic neurons contributed to cellular and behavioral responses to morphine and may have implications for the future treatment of drug addiction.  相似文献   

20.
《Autophagy》2013,9(5):608-615
Autophagy is an evolutionarily conserved intracellular catabolic system for degradation of long-lived proteins or damaged organelles. In this study, we have identified and characterized a new gene, epg-1, that plays a role in the autophagy pathway in C. elegans. Loss of function of epg-1 causes defects in various autophagy-regulated processes, including degradation of aggregate-prone proteins and optimal survival of animals during starvation. epg-1 encodes a novel protein that shows limited sequence similarity to the yeast autophagy protein Atg13. epg-1 displays a similar expression pattern to, and directly interacts with, the C. elegans Atg1 homolog UNC-51, suggesting that epg-1 encodes a divergent functional homolog of Atg13 in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号