首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complement system plays an important role in inflammation and immunity. In this system, a potent inflammatory ligand is C5a, which initiates its effects by activating its core receptor C5aR1. Thus, compounds that interfere with the C5a–C5aR1 interaction could alleviate some inflammatory conditions. Consequently, several ligands that bind to either C5a or C5aR1 have previously been isolated and evaluated. In the present study, two RNA aptamers, aptamer 1 and aptamer 9, that specifically bind to hC5aR1 with much higher affinity than antibodies were isolated. These two aptamers were tested for their ability to interfere with the cognate ligand of hC5aR1, C5a, using a chemotaxis assay. Both aptamer 1 and 9 interfered with the C5a interaction, suggesting that the aptamers recognized the extracellular domain of hC5aR1 responsible for hC5a ligand binding. Considering the higher affinity of aptamers to the hC5aR1 and their interference with hC5a ligand binding, further study is warranted to explore not only their applications in the diagnosis of inflammatory diseases but also their usefulness in modulating hC5a and hC5aR1 interactions.  相似文献   

2.
Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness.  相似文献   

3.
4.
Human genome projects have enabled whole genome mapping and improved our understanding of the genes in humans. However, many unknown genes remain to be functionally characterized. In this study, we characterized human chromosome 4 open reading frame 34 gene (hC4orf34). hC4orf34 was highly conserved from invertebrate to mammalian cells and ubiquitously expressed in the organs of mice, including the heart and brain. Interestingly, hC4orf34 is a novel ER-resident, type I transmembrane protein. Mutant analysis showed that the transmembrane domain (TMD) of hC4orf34 was involved in ER retention. Overall, our results indicate that hC4orf34 is an ER-resident type I transmembrane protein, and might play a role in ER functions including Ca2+ homeostasis and ER stress. [BMB Reports 2014; 47(10): 563-568]  相似文献   

5.
6.
Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca2+ transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca2+ sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca2+ sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.  相似文献   

7.
The complement 4 binding protein (C4bp) plays a crucial role in the inhibition of the complement cascade. It has an extraordinary seven-arm octopus-like structure with 7 tentacle-like identical chains, held together at their C-terminal end. The C-terminal domain does oligomerize in isolation, and is necessary and sufficient to oligomerize full-length C4bp. It is predicted to form a seven-helix coiled coil, and its multimerization properties make it a promising vaccine adjuvant, probably by enhancing the structural stability and binding affinity of the presented antigen. Here, we present the solid-state NMR resonance assignment of the human C4bp C-terminal oligomerization Domain, hC4pbOD, and the corresponding secondary chemical shifts.  相似文献   

8.
The pharmacophore of the human C5a anaphylatoxin.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have determined which amino acids contribute to the pharmacophore of human C5a, a potent inflammatory mediator. A systematic mutational analysis of this 74-amino acid protein was performed and the effects on the potency of receptor binding and of C5a-induced intracellular calcium ion mobilization were measured. This analysis included the construction of hybrids between C5a and the homologous but unreactive C3a protein and site-directed mutagenesis. Ten noncontiguous amino acids from the structurally well-defined 4-helix core domain (amino acids 1-63) and the C-terminal arginine-containing tripeptide were found to contribute to the pharmacophore of human C5a. The 10 mostly charged amino acids from the core domain generally made small incremental contributions toward binding affinity, some of which were independent. Substitutions of the C-terminal amino acid Arg 74 produced the largest single effect. We also found the connection between these 2 important regions to be unconstrained.  相似文献   

9.
The pig cDNA encoding C1 esterase inhibitor (C1-INH) was isolated and the homology of the sequence was compared with that from other animals. The structure of pig C1-INH contains a two disulfide bridge pattern identical to the human C1-INH. In the amino acid sequence of the first Cys-91 to the C-terminal end, the pigC1-INH has a 76.2% homology with the human protein, and the sequence of the reactive site is close to the human. A surface-bound form of pig and human C1-INH, pC1-INH-PI and hC1-INH, respectively, were next constructed. Stable Chinese hamster ovarian tumor (CHO) cell lines and pig endothelial cell (PEC) lines expressing these C1-INH-PI were prepared by transfection. The basic function and the species specificity of pCI-INH were then investigated using these transfectants. pC1-INH and hC1-INH have almost the same suppressive effect on pig, human, dog and rabbit sera in complement-dependent cell lysis, indicating little species specificity.  相似文献   

10.
Staphylococcus aureus is an important human pathogen that causes infections that may present high morbidity and mortality. Among its many virulence factors protein A (SpA) and Staphylococcal binding immunoglobulin protein (Sbi) bind the Fc portion of IgG interfering with opsonophagocytosis. We have previously demonstrated that SpA interacts with the TNF-α receptor (TNFR) 1 through each of the five IgG binding domains and induces the production of pro-inflammatory cytokines and chemokines. The IgG binding domains of Sbi are homologous to those of SpA, which allow us to hypothesize that Sbi might also have a role in the inflammatory response induced by S. aureus. We demonstrate that Sbi is a novel factor that participates in the induction of the inflammatory response during staphylococcal infections via TNFR1 and EGFR mediated signaling as well as downstream MAPKs. The expression of Sbi significantly contributed to IL-6 production and modulated CXCL-1 expression as well as neutrophil recruitment to the site of infection, thus demonstrating for the first time its relevance as a pro-inflammatory staphylococcal antigen in an in vivo model.  相似文献   

11.
The aim of the present investigation was to elucidate possible effects of cystatin C on inflammatory responses mediated by macrophages. Previously it has been shown that in vitro treatment of murine peritoneal macrophages with interferon-γ (IFN-γ) causes a down-regulation of cystatin C secretion. To investigate whether such changes in cystatin C expression in turn can affect inflammatory responses mediated by macrophages, we have compared effects of IFN-γ on macrophages isolated from wild-type (cysC+/+) and cystatin C knockout (cysC−/−) mice. It was shown that IFN-γ-primed cysC−/− macrophages exhibit significantly higher interleukin-10 (IL-10) but lower tumor necrosis factor-α (TNF-α) expression, and reduced nuclear factor (NF)-κB p65 activation, compared to similarly primed cysC+/+ cells. Exogenously added cystatin C enhanced IFN-γ-induced activation of NF-κB p65 and increased mRNA levels for inducible NO synthase (iNOS) in cysC−/− macrophages as well as levels of nitric oxide and TNF-α in the cell culture medium, in agreement with an enhanced pro-inflammatory response. Accordingly, IFN-γ-induced IL-10 mRNA expression in cysC−/− macrophages was down-regulated by exogenously added cystatin C. Taken together, our data provide evidence that changes in cystatin C levels alter macrophage responses to IFN-γ. The latter down-regulates the production of cystatin C, which leads to a suppressed inflammatory condition with enhanced IL-10 levels and down-regulated TNF-α and NF-κB. It is concluded that cystatin C through this effect can act as an immunomodulatory molecule.  相似文献   

12.
13.
Hepatitis C virus (HCV) infection is highly efficient in the establishment of persistent infection, which leads to the development of chronic liver disease and hepatocellular carcinoma. Impaired T cell responses with reduced IFN-γ production have been reported to be associated with persistent HCV infection. Extracellular HCV core is a viral factor known to cause HCV-induced T cell impairment via its suppressive effect on the activation and induction of pro-inflammatory responses by antigen-presenting cells (APCs). The activation of STAT proteins has been reported to regulate the inflammatory responses and differentiation of APCs. To further characterize the molecular basis for the regulation of APC function by extracellular HCV core, we examined the ability of extracellular HCV core to activate STAT family members (STAT1, -2, -3, -5, and -6). In this study, we report the activation of STAT3 on human monocytes, macrophages, and dendritic cells following treatment with extracellular HCV core as well as treatment with a gC1qR agonistic monoclonal antibody. Importantly, HCV core-induced STAT3 activation is dependent on the activation of the PI3K/Akt pathway. In addition, the production of multifunctional cytokine IL-6 is essential for HCV core-induced STAT3 activation. These results suggest that HCV core-induced STAT3 activation plays a critical role in the alteration of inflammatory responses by APCs, leading to impaired anti-viral T cell responses during HCV infection.  相似文献   

14.
Nuclear factor (NF)-kappaB activation is a critical step in the triggering of inflammatory responses by macrophages. Although numerous investigations have been reported, the precise regulatory mechanisms controlling inflammatory responses mediated by NF-kappaB remain unclear. In this study, we investigated the early signaling events responsible for modulating NF-kappaB activation using various parameters, such as the expression of pro-inflammatory genes and the phosphorylation levels of inhibitor of kappaB alpha (IkappaB alpha) and its upstream kinases. Lipopolysaccharide (LPS) treatment biphasically induced activation of IkappaB alpha phosphorylation at 5 and 30 min, which induced subsequent pro-inflammatory gene expression that was maximized at 45 and 90 min. Of the intracellular signals tested, a series of signaling cascades composed of spleen tyrosine kinase (Syk), phosphoinositide-3-kinase (PI3K), and Akt (protein kinase B) were involved in regulating early phosphorylation of IkappaB alpha, according to biochemical and pharmacological analyses. Therefore, our data suggests that Syk-mediated activation of intracellular signaling in response to LPS may play an important role in LPS-induced inflammatory signaling events. Thus, Syk may be a potential target for the development of potent anti-inflammatory drugs.  相似文献   

15.
Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been suggested as an attractive target to improve insulin sensitivity in different cell types. In the present work, we have investigated the effect of PTP1B deficiency on the response of human and murine macrophages. Using in vitro and in vivo approaches in mice and silencing PTP1B in human macrophages with specific siRNAs, we have demonstrated that PTP1B deficiency increases the effects of pro-inflammatory stimuli in both human and rodent macrophages at the time that decreases the response to alternative stimulation. Moreover, the absence of PTP1B induces a loss of viability in resting macrophages and mainly after activation through the classic pathway. Analysis of early gene expression in macrophages treated with pro-inflammatory stimuli confirmed this exacerbated inflammatory response in PTP1B-deficient macrophages. Microarray analysis in samples from wild-type and PTP1B-deficient macrophages obtained after 24 h of pro-inflammatory stimulation showed an activation of the p53 pathway, including the excision base repair pathway and the insulin signaling pathway in the absence of PTP1B. In animal models of lipopolysaccharide (LPS) and D-galactosamine challenge as a way to reveal in vivo inflammatory responses, animals lacking PTP1B exhibited a higher rate of death. Moreover, these animals showed an enhanced response to irradiation, in agreement with the data obtained in the microarray analysis. In summary, these results indicate that, although inhibition of PTP1B has potential benefits for the treatment of diabetes, it accentuates pro-inflammatory responses compromising at least macrophage viability.  相似文献   

16.
Beta amyloid peptide-containing neuritic plaques are a defining feature of Alzheimer's disease pathology. Beta amyloid are 38-43 residue peptides derived by proteolytic cleavage of amyloid precursor protein. Although much attention has focused on the proteolytic events leading to beta amyloid generation, the function of amyloid precursor protein remains poorly described. Previously, we reported that amyloid precursor protein functions as a pro-inflammatory receptor on monocytic lineage cells and defined a role for amyloid precursor protein in adhesion by demonstrating that beta(1) integrin-mediated pro-inflammatory activation of monocytes is amyloid precursor protein dependent. We demonstrated that antibody-induced cross-linking of amyloid precursor protein in human THP-1 monocytes and primary mouse microglia stimulates a tyrosine kinase-based pro-inflammatory signaling response leading to acquisition of a reactive phenotype. Here, we have identified pro-inflammatory mediators released upon amyloid precursor protein-dependent activation of monocytes and microglia. We show that amyloid precursor protein cross-linking stimulated tyrosine kinase-dependent increases in pro-inflammatory cytokine release and a tyrosine kinase-independent increase in beta amyloid 1-42 generation. These data provide much needed insight into the function of amyloid precursor protein and provide potential therapeutic targets to limit inflammatory changes associated with the progression of Alzheimer's disease.  相似文献   

17.
18.
19.
20.
Inflammatory bowel diseases are a critical public health issue, and as treatment options remain limited, there is a need to unravel the underlying pathomechanisms in order to identify new therapeutic targets. Complement activation was found in patients suffering from inflammatory bowel disease, and the complement anaphylatoxin C5a and its receptor C5aR have been implicated in disease pathogenesis in animal models of bowel inflammation. To further characterize complement-related pathomechanisms in inflammatory bowel disease, we have investigated the role of the anaphylatoxin C3a receptor in acute dextran sulfate sodium-induced colitis in mice. For this, colitis was induced in C3a receptor-deficient BALB/c and C57BL/6 mice, and disease severity was evaluated by clinical and histological examination, and by measuring the mRNA expression or protein levels of inflammatory mediators in the tissue. C3a receptor deficiency was partially protective in BALB/c mice, which had significantly reduced weight loss, clinical and histological scores, colon shortening, and CXCL-1/KC mRNA, myeloperoxidase and interleukin-6 tissue levels compared to the corresponding wild type mice. In C57BL/6 mice the differences between wild type and C3a receptor-deficient animals were much smaller and reached no significance. Our data demonstrate that the contribution of C3a receptor to disease pathogenesis and severity of dextran sulfate sodium-induced colitis in mice depends on the genetic background. Further studies will be required to clarify whether targeting of C3a receptor, possibly in combination with C5a receptor, might be considered as a therapeutic strategy for inflammatory bowel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号