首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The field of organoid engineering promises to revolutionize medicine with wide-ranging applications of scientific, engineering, and clinical interest, including precision and personalized medicine, gene editing, drug development, disease modelling, cellular therapy, and human development. Organoids are a three-dimensional (3D) miniature representation of a target organ, are initiated with stem/progenitor cells, and are extremely promising tools with which to model organ function. The biological basis for organoids is that they foster stem cell self-renewal, differentiation, and self-organization, recapitulating 3D tissue structure or function better than two-dimensional (2D) systems. In this review, we first discuss the importance of epithelial organs and the general properties of epithelial cells to provide a context and rationale for organoids of the liver, pancreas, and gall bladder. Next, we develop a general framework to understand self-organization, tissue hierarchy, and organoid cultivation. For each of these areas, we provide a historical context, and review a wide range of both biological and mathematical perspectives that enhance understanding of organoids. Next, we review existing techniques and progress in hepatobiliary and pancreatic organoid engineering. To do this, we review organoids from primary tissues, cell lines, and stem cells, and introduce engineering studies when applicable. We discuss non-invasive assessment of organoids, which can reveal the underlying biological mechanisms and enable improved assays for growth, metabolism, and function. Applications of organoids in cell therapy are also discussed. Taken together, we establish a broad scientific foundation for organoids and provide an in-depth review of hepatic, biliary and pancreatic organoids.  相似文献   

2.
Since their discovery 15 years ago, human pluripotent stem cell (hPSC) technologies have begun to revolutionize science and medicine, rapidly expanding beyond investigative research to drug discovery and development. Efforts to leverage hPSCs over the last decade have focused on increasing both the complexity and in vivo fidelity of human cellular models through enhanced differentiation methods. While these evolutions have fostered novel insights into disease mechanisms and influenced clinical drug discovery and development, there are still several considerations that limit the utility of hPSC models. In this review, we highlight important, yet underexplored avenues to broaden their reach. We focus on (i) the importance of diversifying existing hPSC collections, and their utilization to investigate therapeutic strategies in individuals from different genetic backgrounds, ancestry and sex; (ii) considerations for the selection of therapeutically relevant hPSC-based models; (iii) strategies to adequately increase the scale of cell-based studies; and (iv) the advances and constraints of clinical trials in a dish. Moreover, we advocate for harnessing the translational capabilities of hPSC models along with the use of innovative, scalable approaches for understanding genetic biases and the impact of sex and ancestry on disease mechanisms and drug efficacy and response. The next decade of hPSC innovation is poised to provide vast insights into the genetic basis of human disease and enable rapid advances to develop, repurpose, and ensure the safety of the next generation of disease therapies across diverse human populations.  相似文献   

3.
PurposeTo compare the timing and efficiency of the development of Macaca mulatta, a nonhuman primate (NHP), induced pluripotent stem cell (rhiPSC) derived retinal organoids to those derived from human embryonic stem cells (hESCs).ResultsGeneration of retinal organoids was achieved from both human and several NHP pluripotent stem cell lines. All rhiPSC lines resulted in retinal differentiation with the formation of optic vesicle‐like structures similar to what has been observed in hESC retinal organoids. NHP retinal organoids had laminated structure and were composed of mature retinal cell types including cone and rod photoreceptors. Single‐cell RNA sequencing was conducted at two time points; this allowed identification of cell types and developmental trajectory characterization of the developing organoids. Important differences between rhesus and human cells were measured regarding the timing and efficiency of retinal organoid differentiation. While the culture of NHP‐derived iPSCs is relatively difficult compared to that of human stem cells, the generation of retinal organoids from NHP iPSCs is feasible and may be less time‐consuming due to an intrinsically faster timing of retinal differentiation.ConclusionsRetinal organoids produced from rhesus monkey iPSCs using established protocols differentiate through the stages of organoid development faster than those derived from human stem cells. The production of NHP retinal organoids may be advantageous to reduce experimental time for basic biology studies in retinogenesis as well as for preclinical trials in NHPs studying retinal allograft transplantation.  相似文献   

4.
We present a predictive bioprocess design strategy employing cell- and molecular-level analysis of rate-limiting steps in human pluripotent stem cell (hPSC) expansion and differentiation, and apply it to produce definitive endoderm (DE) progenitors using a scalable directed-differentiation technology. We define a bioprocess optimization parameter (L; targeted cell Loss) and, with quantitative cell division tracking and fate monitoring, identify and overcome key suspension bioprocess bottlenecks. Adapting process operating conditions to pivotal parameters (single cell survival and growth rate) in a cell-line-specific manner enabled adherent-equivalent expansion of hPSCs in feeder- and matrix-free defined-medium suspension culture. Predominantly instructive differentiation mechanisms were found to underlie a subsequent 18-fold expansion, during directed differentiation, to high-purity DE competent for further commitment along pancreatic and hepatic lineages. This study demonstrates that iPSC expansion and differentiation conditions can be prospectively specified to guide the enhanced production of target cells in a scale-free directed differentiation system.  相似文献   

5.
类器官是利用干细胞的自我更新和分化能力,在体外培养形成的一种微小组织器官类似物,在很大程度上具有体内相应器官的功能。迄今为止,在3D培养条件下,已经成功培养出多种类器官如肺、胃、肠、肝和肾等类器官。它们不仅可作为组织器官的替代品用于药物和临床研究,还可用于体内器官移植。本文综述了类器官在药物毒性检测、药效评价和新药筛选中的作用以及利用类器官建立疾病模型、研究组织器官发育和类器官在精准医疗、再生医学中的价值。  相似文献   

6.
Recent developments in 3D cultures exploiting the self‐organization ability of pluripotent stem cells have enabled the generation of powerful in vitro systems termed brain organoids. These 3D tissues recapitulate many aspects of human brain development and disorders occurring in vivo. When combined with improved differentiation methods, these in vitro systems allow the generation of more complex “assembloids,” which are able to reveal cell diversities, microcircuits, and cell–cell interactions within their 3D organization. Here, the ways in which human brain organoids have contributed to demystifying the complexities of brain development and modeling of developmental disorders is reviewed and discussed. Furthermore, challenging questions that are yet to be addressed by emerging brain organoid research are discussed.  相似文献   

7.
Organoids are in vitro cultures of miniature fetal or adult organ-like structures. Their potentials for use in tissue and organ replacement, disease modeling, toxicology studies, and drug discovery are tremendous. Currently, major challenges facing human organoid technology include (i) improving the range of cellular heterogeneity for a particular organoid system, (ii) mimicking the native micro- and matrix-environment encountered by cells within organoids, and (iii) developing robust protocols for the in vitro maturation of organoids that remain mostly fetal-like in cultures. To tackle these challenges, we advocate the principle of reverse engineering that replicates the inner workings of in vivo systems with the goal of achieving functionality and maturation of the resulting organoid structures with the input of minimal intrinsic (cellular) and environmental (matrix and niche) constituents. Here, we present an overview of organoid technology development in several systems that employ cell materials derived from fetal and adult tissues and pluripotent stem cell cultures. We focus on key studies that exploit the self-organizing property of embryonic progenitors and the role of designer matrices and cell-free scaffolds in assisting organoid formation. We further explore the relationship between adult stem cells, niche factors, and other current developments that aim to enhance robust organoid maturation. From these works, we propose a standardized pipeline for the development of future protocols that would help generate more physiologically relevant human organoids for various biomedical applications.  相似文献   

8.
《Organogenesis》2013,9(2):159-163
Pluripotent stem cells (PSCs) have the ability to spontaneously generate structured tissues in vitro reminiscent of embryonic tissue development. Recently, complex organoids such as cortical tissues, cerebral brain organoids, optical cups, intestinal tissues, and liver buds have been generated from PSCs derived from healthy individuals and patients with genetic diseases, providing powerful tools to understand morphogenesis and disease pathology. This article highlights recent advances in the state-of-art generation of organoids from PSCs, possible signaling pathways and mechanisms involved in organogenesis, and the understanding of extracellular microenvironment. Challenges involved in the organoid generation such as increasing organoid size, enhancing the tissue complexity, and improving functional maturation are also discussed.  相似文献   

9.
Yan Li  Chunhui Xu  Teng Ma 《Organogenesis》2014,10(2):159-163
Pluripotent stem cells (PSCs) have the ability to spontaneously generate structured tissues in vitro reminiscent of embryonic tissue development. Recently, complex organoids such as cortical tissues, cerebral brain organoids, optical cups, intestinal tissues, and liver buds have been generated from PSCs derived from healthy individuals and patients with genetic diseases, providing powerful tools to understand morphogenesis and disease pathology. This article highlights recent advances in the state-of-art generation of organoids from PSCs, possible signaling pathways and mechanisms involved in organogenesis, and the understanding of extracellular microenvironment. Challenges involved in the organoid generation such as increasing organoid size, enhancing the tissue complexity, and improving functional maturation are also discussed.  相似文献   

10.
The human adult liver has a multi‐cellular structure consisting of large lobes subdivided into lobules containing portal triads and hepatic cords lined by specialized blood vessels. Vital hepatic functions include filtering blood, metabolizing drugs, and production of bile and blood plasma proteins like albumin, among many other functions, which are generally dependent on the location or zone in which the hepatocyte resides in the liver. Due to the liver's intricate structure, there are many challenges to design differentiation protocols to generate more mature functional hepatocytes from human stem cells and maintain the long‐term viability and functionality of primary hepatocytes. To this end, recent advancements in three‐dimensional (3D) stem cell culture have accelerated the generation of a human miniature liver system, also known as liver organoids, with polarized epithelial cells, supportive cell types and extra‐cellular matrix deposition by translating knowledge gained in studies of animal organogenesis and regeneration. To facilitate the efforts to study human development and disease using in vitro hepatic models, a thorough understanding of state‐of‐art protocols and underlying rationales is essential. Here, we review rapidly evolving 3D liver models, mainly focusing on organoid models differentiated from human cells.  相似文献   

11.
AbstractUnderstanding etiology of human neurological and psychiatric diseases is challenging. Genomic changes, protracted development, and histological features unique to human brain development limit the disease aspects that can be investigated using model organisms. Hence, in order to study phenotypes associated with human brain development, function, and disease, it is necessary to use alternative experimental systems that are accessible, ethically justified, and replicate human context. Human pluripotent stem cell (hPSC)-derived brain organoids offer such a system, which recapitulates features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation of neural progenitors into neurons and glial cells and the complex interactions among the diverse, emergent cell types of the developing brain in three-dimensions (3-D). In recent years, numerous brain organoid protocols and related techniques have been developed to recapitulate aspects of embryonic and fetal brain development in a reproducible and predictable manner. Altogether, these different organoid technologies provide distinct bioassays to unravel novel, disease-associated phenotypes and mechanisms. In this review, we summarize how the diverse brain organoid methods can be utilized to enhance our understanding of brain disorders.Facts
  • Brain organoids offer an in vitro approach to study aspects of human brain development and disease.
  • Diverse brain organoid techniques offer bioassays to investigate new phenotypes associated with human brain disorders that are difficult to study in monolayer cultures.
  • Brain organoids have been particularly useful to study phenomena and diseases associated with neural progenitor morphology, survival, proliferation, and differentiation.
Open question
  • Future brain organoid research needs to aim at later stages of neurodevelopment, linked with neuronal activity and connections, to unravel further disease-associated phenotypes.
  • Continued improvement of existing organoid protocols is required to generate standardized methods that recapitulate in vivo-like spatial diversity and complexity.
Subject terms: Neuroscience, Neurological disorders

  相似文献   

12.
Traditional 2D cell cultures do not accurately recapitulate tumor heterogeneity, and insufficient human cell lines are available. Patient-derived xenograft (PDX) models more closely mimic clinical tumor heterogeneity, but are not useful for high-throughput drug screening. Recently, patient-derived organoid cultures have emerged as a novel technique to fill this critical need. Organoids maintain tumor tissue heterogeneity and drug-resistance responses, and thus are useful for high-throughput drug screening. Among various biological tissues used to produce organoid cultures, circulating tumor cells (CTCs) are promising, due to relative ease of ascertainment. CTC-derived organoids could help to acquire relevant genetic and epigenetic information about tumors in real time, and screen and test promising drugs. This could reduce the need for tissue biopsies, which are painful and may be difficult depending on the tumor location. In this review, we have focused on advances in CTC isolation and organoid culture methods, and their potential applications in disease modeling and precision medicine.  相似文献   

13.
Pioneering studies within the last few years have allowed the in vitro expansion of tissue‐specific adult stem cells from a variety of endoderm‐derived organs, including the stomach, small intestine, and colon. Expansion of these cells requires activation of the receptor Lgr5 by its ligand R‐spondin 1 and is likely facilitated by the fact that in healthy adults the stem cells in these organs are highly proliferative. In many other adult organs, such as the liver, proliferating cells are normally not abundant in adulthood. However, upon injury, the liver has a strong regenerative potential that is accompanied by the emergence of Lgr5‐positive stem cells; these cells can be isolated and expanded in vitro as organoids. In an effort to isolate stem cells from non‐regenerating mouse livers, we discovered that healthy gallbladders are a rich source of stem/progenitor cells that can be propagated in culture as organoids for more than a year. Growth of these organoids was stimulated by R‐spondin 1 and noggin, whereas in the absence of these growth factors, the organoids differentiated partially toward the hepatocyte fate. When transplanted under the liver capsule, gallbladder‐derived organoids maintained their architecture for 2 weeks. Furthermore, single cells prepared from dissociated organoids and injected into the mesenteric vein populated the liver parenchyma of carbon tetrachloride‐treated mice. Human gallbladders were also a source of organoid‐forming stem cells. Thus, under specific growth conditions, stem cells can be isolated from healthy gallbladders, expanded almost indefinitely in vitro, and induced to differentiate toward the hepatocyte lineage.  相似文献   

14.
Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting the aging population. Despite many studies, there remains an urgent need to identify the root causes of AD, together with potential treatments. Cerebral organoid technology has made it possible to model human neurophysiology and disease with increasing accuracy in patient-derived tissue cultures. Here, we review the most recent advances in modeling AD in organoids and other engineered three-dimensional cell culture systems. Early studies demonstrated that familial AD patient-derived organoids robustly develop disease pathology. Ongoing work has expanded this focus to investigate the genetic and environmental causes of late-onset sporadic AD and harness organoids for high-throughput drug screens. Future organoid models will need to incorporate additional cell types and tissues implicated in disease pathogenesis, including microglia and vasculature. We anticipate the continuation of this rapid progress in developing cerebral organoid technology toward facilitating our understanding of and informing treatment strategies for AD.  相似文献   

15.
ObjectiveTo provide a standardized protocol for large‐scale production of proximal tubular epithelial cells (PTEC) generated from human pluripotent stem cells (hPSC).MethodsThe hPSC were expanded and differentiated into PTEC on matrix‐coated alginate beads in an automated levitating fluidic platform bioLevitator. Differentiation efficacy was evaluated by immunofluorescence staining and flow cytometry, ultrastructure visualized by electron microscopy. Active reabsorption by PTEC was investigated by glucose, albumin, organic anions and cations uptake assays. Finally, the response to cisplatin‐treatment was assessed to check the potential use of PTEC to model drug‐induced nephrotoxicity.ResultshPSC expansion and PTEC differentiation could be performed directly on matrix‐coated alginate beads in suspension bioreactors. Renal precursors arose 4 days post hPSC differentiation and PTEC after 8 days with 80% efficiency, with a 10‐fold expansion from hPSC in 24 days. PTEC on beads, exhibited microvilli and clear apico‐basal localization of markers. Functionality of PTECs was confirmed by uptake of glucose, albumin, organic anions and cations and expression of KIM‐1 after Cisplatin treatment.ConclusionWe demonstrate the efficient expansion of hPSC, controlled differentiation to renal progenitors and further specification to polarized tubular epithelial cells. This is the first report employing biolevitation and matrix‐coated beads in a completely defined medium for the scalable and potentially automatable production of functional human PTEC.  相似文献   

16.
嗅上皮接收和传导气味信号是嗅觉系统的重要组成部分。嗅上皮的损伤在通常情况下可自发恢复,但特定疾病或衰老造成的嗅上皮损伤会引起嗅觉功能减退和嗅觉障碍。嗅上皮主要由基底细胞、支持细胞以及嗅感觉神经元组成。为了在体外建立包含多种细胞类型的嗅上皮类器官,本研究采用3D细胞培养技术,通过筛选小分子药物,构建了包含多种细胞类型的嗅上皮类器官模型,包含水平基底样细胞、球形基底样细胞、支持样细胞和嗅感觉神经元样细胞多种细胞类型。类器官培养体系中多种生长因子和小分子化合物在细胞增殖速度、细胞组成以及不同细胞类型标志基因的表达水平等方面对类器官产生影响。Wnt信号通路激活剂CHIR-99021能够提高嗅上皮类器官的成克隆率和增殖速度且有利于提高嗅上皮类器官中嗅感觉神经元样细胞标志基因的表达水平;培养体系的任一因子均能提高类器官中cKit阳性的球形基底样细胞克隆比例;表皮生长因子(epidermal growth factor,EGF)和维生素C均有利于类器官中水平基底样细胞标志基因的表达。本研究建立的嗅上皮类器官系统模拟了嗅上皮干细胞分化产生多种嗅上皮细胞类型的过程,为研究嗅上皮组织损伤再生、嗅觉障碍病理...  相似文献   

17.
Organoids are three-dimensional structures that self-organize from human pluripotent stem cells or primary tissue, potentially serving as a traceable and manipulatable platform to facilitate our understanding of organogenesis. Despite the ongoing advancement in generating organoids of diverse systems, biological applications of in vitro generated organoids remain as a major challenge in part due to a substantial lack of intricate complexity. The studies of development and regeneration enumerate the essential roles of highly diversified nonepithelial populations such as mesenchyme and endothelium in directing fate specification, morphogenesis, and maturation. Furthermore, organoids with physiological and homeostatic functions require direct and indirect inter-organ crosstalk recapitulating what is seen in organogenesis. We herein review the evolving organoid technology at the cell, tissue, organ, and system level with a main emphasis on endoderm derivatives.  相似文献   

18.
肝脏疾病易感性差异大且个体间的肝脏细胞存在明显的异质性,因此开发体外能够长期存活并具有代谢功能的人体类肝组织细胞模型,对治疗终末期肝病、开展肝脏致病机理研究及药物筛选具有重要意义。过去十年中,体外三维类器官模型发展迅猛,为疾病模拟、精准化治疗领域的研究提供了新的工具,显示出巨大潜力。肝脏类器官具有患者的基因表达与突变特征,在体外能够较长时间地保持肝脏细胞功能,已被应用于疾病模拟及药物有效性研究,并具有进行原位或异位移植发挥治疗作用的应用潜能。就干细胞、肝脏原代细胞等不同来源的肝脏类器官的发展及近年的研究进展作了综述,以期为肝脏类器官在疾病建模、药物发现和器官移植领域的研究和应用提供新的思路。  相似文献   

19.
乳腺癌是女性最常见的癌症,目前乳腺癌的研究主要借助体内模型和传统细胞培养方法,然而研究表明,由于人类和动物之间固有的物种差异,以及器官和细胞之间组织结构的差异,使用上述两种研究方法研制出的药物,在临床试验中失败率高达90%,因此,类器官三维培养应运而生。类器官是一种具有空间结构的三维细胞复合体,它作为一种新的肿瘤研究模型,在精准医疗、器官移植、建立难治疾病模型、基因治疗和药物研发等方向具有广阔的应用前景,是未来生命科学研究的理想载体之一。乳腺癌作为一种表型复杂的异质性疾病,其患者生存率较低,而乳腺癌类器官可以重现人类乳腺癌的许多关键特征,故构建乳腺癌类器官生物库,将会为研究乳腺癌的发生、发展、转移和耐药机制提供一个新的平台。文中将系统介绍类器官的培养条件及其在乳腺癌相关研究中的应用,并对类器官的应用前景进行展望。  相似文献   

20.
Human organoids The development of medically highly relevant organoids from stem cells is based on two lines of cell biologic research. Firstly, the realization that dissociated cells from an embryonic tissue can reconstitute to a histotypic tissue by selforganisational processes goes back more than a century. Using the model of the vertebrate retina (chick, mouse), appropriate culture conditions led to spherical 3D tissue structures (retinal spheroids), which resembled much a normal three‐fold layered retina, and – in fact – represented the first example of a neuronal organoid. Thereby, the possibility of artificial production of tissues from appropriate stem cells was demonstrated in principle, which now – secondly – was realized through the discovery of induced pluripotent stem cells (iPSCs) from differentiated human tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号