首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Ras proteins mediate signals both via extracellular signal-regulated kinase 1 and 2 (ERK), and phosphoinositide 3-kinase (PI3K). These signals are key events in cell protection and compensatory cell growth after exposure to cell damaging and pro-apoptotic stimuli, thus maintaining homeostasis. By transfection techniques, we found that both H-Ras and K-Ras were expressed and appeared functionally active in primary hepatocytes. We compared the ability of H-Ras and K-Ras homologues to preferentially activate one of the two pathways, thereby differentially controlling cell survival and growth. We found that ectopic expression of dominant negative (DN) H-RasN17, but not DN K-RasN17, efficiently inhibited both phosphorylation and translocation of ERK to the nuclear compartment, which are prerequisites for cell cycle progression. Furthermore, ectopic expression of constitutive active (CA) H-RasV12, but not CA K-RasV12, potentiated EGF-induced proliferation. We also found that expression of CA mutants of either H-Ras or K-Ras protected hepatocytes from transforming growth factor-beta1 (TGF-beta1)-induced apoptosis. However, H-Ras-induced survival was mediated by ERK/RSK as well as by PI3K, whereas K-Ras-induced survival was mediated by PI3K only. In conclusion, H-Ras and K-Ras had differential functions in proliferation and survival of primary hepatocytes. H-Ras was the major mediator of ERK-induced proliferation and survival, whereas H-Ras and K-Ras both mediated PI3K-induced survival.  相似文献   

3.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is over-expressed during G2/M phase in most cancer cells. In contrast, we previously reported that Survivin is expressed throughout the cell cycle in normal CD34+ hematopoietic stem and progenitor cells stimulated by the combination of Thrombopoietin (Tpo), Stem Cell Factor (SCF) and Flt3 ligand (FL). In order to address whether Survivin expression is specifically up-regulated by hematopoietic growth factors before cell cycle entry, we isolated quiescent CD34+ cells and investigated Survivin expression in response to growth factor stimulation. Survivin is up-regulated in CD34+ cells with 2N DNA content following growth factor addition, suggesting it becomes elevated during G0/G1. Survivin is barely detectable in freshly isolated umbilical cord blood (UCB) Ki-67negative and Cyclin Dnegative CD34+ cells, however incubation with Tpo, SCF and FL for 20 hrs results in up-regulation without entry of cells into cell cycle. Culture of G0 CD34+ cells isolated based on Hoechst 33342/PyroninY staining with Tpo, SCF and FL for 48 hrs, results in significantly elevated Survivin mRNA and protein levels. Moreover, labeling of fresh G0 CD34+ cells with 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) before culture with growth factors for up to 72 hrs, revealed that Survivin expression was elevated in CFSEbright G0 CD34+ cells, indicating that up-regulation occurred before entry into G1. These results suggest that up-regulation of Survivin expression in CD34+ cells is an early event in cell cycle entry that is regulated by hematopoietic growth factors and does not simply reflect cell cycle progression and cell division.

Key Words:

Survivin, Cord blood, CD34+ cells, Cell cycle  相似文献   

4.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is overexpressed during G(2)/M phase in most cancer cells. In contrast, we previously reported that Survivin is expressed throughout the cell cycle in normal CD34(+) hematopoietic stem and progenitor cells stimulated by the combination of Thrombopoietin (Tpo), Stem Cell Factor (SCF) and Flt3 ligand (FL). In order to address whether Survivin expression is specifically up-regulated by hematopoietic growth factors before cell cycle entry, we isolated quiescent CD34(+) cells and investigated Survivin expression in response to growth factor stimulation. Survivin is up-regulated in CD34(+) cells with 2N DNA content following growth factor addition, suggesting it becomes elevated during G(0)/G(1). Survivin is barely detectable in freshly isolated umbilical cord blood (UCB) Ki-67(negative) and Cyclin D(negative) CD34(+) cells, however incubation with Tpo, SCF and FL for 20 hrs results in up-regulation without entry of cells into cell cycle. Culture of G(0) CD34(+) cells isolated based on Hoechst 33342/PyroninY staining with Tpo, SCF and FL for 48 hrs, results in significantly elevated Survivin mRNA and protein levels. Moreover, labeling of fresh G(0) CD34(+) cells with 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) before culture with growth factors for up to 72 hrs, revealed that Survivin expression was elevated in CFSE(bright) G(0) CD34(+) cells, indicating that up-regulation occurred before entry into G1. These results suggest that up-regulation of Survivin expression in CD34(+) cells is an early event in cell cycle entry that is regulated by hematopoietic growth factors and does not simply reflect cell cycle progression and cell division.  相似文献   

5.
The ErbB family of receptor tyrosine kinases regulates cell growth, differentiation and survival. Activation of the receptors is induced by specific growth factors in an autocrine, paracrine or juxtacrine manner. The activated ErbB receptors turn on a large variety of signaling cascades, including the prominent Ras-dependent signaling pathways. The activated Ras can induce secretion of growth factors such as EGF and neuregulin, which activate their respective receptors. In the present study, we demonstrate for the first time that activated Ras can activate ErbB4 receptor in a ligand-independent manner. Expression of constitutively active H-Ras(12V), K-Ras(12V) or N-Ras(13V) in PC12-ErbB4 cells induced ErbB4-receptor phosphorylation, indicating that each of the most abundant Ras isoforms can induce receptor activation. NRG-induced phosphorylation of ErbB4 receptor was blocked by the soluble ErbB4 receptor, which had no effect on the Ras-induced receptor phosphorylation. Moreover, conditioned medium from H-Ras(12V)-transfected PC12-ErbB4 cells had no effect on receptor phosphorylation. It thus indicates that Ras induces ErbB4 phosphorylation in a ligand-independent manner. Each of the Ras effector domain mutants, H-Ras(12V)S35, H-Ras(12V)C40, and H-Ras(12V)G37, which respectively activate Raf1, PI3K, and RalGEF, induced a small but significant receptor phosphorylation. The PI3K inhibitor LY294002 and the MEK inhibitor PD98059 caused a partial inhibition of the Ras-induced ErbB4 receptor phosphorylation. Using a mutant ErbB4 receptor, which lacks kinase activity, we demonstrated that the Ras-mediated ErbB4 phosphorylation depends on the kinase activity of the receptor and facilitates ligand-independent neurite outgrowth in PC12-ErbB4 cells. These experiments demonstrate a novel mechanism controlling ErbB receptor activation. Ras induces ErbB4 receptor phosphorylation in a non-autocrine manner and this activation depends on multiple Ras effector pathways and on ErbB4 kinase activity.  相似文献   

6.
The Ras pathway transduces divergent signals determining normal cell fate and is frequently activated in hematopoietic malignancies, but the manner in which activation contributes to human leukemia is poorly understood. We report that a high level of activated H-Ras signaling in transduced primary human hematopoietic progenitors reduced their proliferation and enhanced monocyte/macrophage differentiation. However, the exposure of these cells to a farnesyltransferase inhibitor and establishment of a moderate level of Ras activity showed increased proliferation, an elevated frequency of primitive blast-like cells, and progenitors with enhanced self-renewal capacity. These results suggest that the amplitude of Ras pathway signaling is a determinant of myeloid cell fate and that moderate Ras activation in primitive hematopoietic cells can be an early event in leukemogenesis.  相似文献   

7.
Inducible gene expression systems in mammalian cells have been shown to be valuable processes to study the specific function of a protein in differentiation, proliferation or survival/apoptosis. Usually, these systems use as inducible reagents, compounds that are thought to be neutral and devoid of physiological or biologically undesirable effects in mammalian cells. We recently used the ecdysone inducible gene expression system in hematopoietic cells and found that the two inducer analogs of ecdysone, muristerone A and ponasterone A, altered the signaling pathways induced by IL-3 in the pro-B cell-line, Ba/F3. Indeed, we showed that these two analogs potentiate the IL-3-dependent activation of the PI 3-kinase/Akt pathway, which could ultimately interfere with the growth, and/or survival of these cells.  相似文献   

8.
9.
N Gotoh  A Tojo    M Shibuya 《The EMBO journal》1996,15(22):6197-6204
Interleukin 3 (IL-3) not only induces DNA synthesis of haematopoietic cells but also maintains their viability by suppressing apoptosis. IL-3 stimulates tyrosine phosphorylation of the Shc adaptor protein and thereby formation of a complex of Shc with Grb2 at phosphorylated tyrosine (Y) residue 317-Shc. This pathway is implicated in Ras/mitogen-activated protein kinase (MAPK) activation towards c-fos gene expression. We examined the possible involvement of Shc in the antiapoptotic activity of IL-3. Conditional overexpression of the Shc SH2 domain, a dominant-negative mutant of Shc, was found to induce apoptosis of IL-3-dependent Ba/F3 cells along with a reduction of c-myc gene expression. Apoptosis was rescued by the exogenously introduced c-myc gene. Since we identify novel tyrosine phosphorylation sites of Shc: Y239 and Y240, their role on cell survival was tested by mutational analysis. Ba/F3 cells expressing mutant Shc Y317F, which is unable to stimulate efficiently the Ras pathway, still showed resistance to apoptosis. However, cells expressing Shc Y239/240F, which is able to stimulate the Ras pathway, were sensitive to apoptosis. In these cells, induction of the c-myc gene was reduced. These findings suggest that a new signalling pathway for cell survival is generated from Y239/240 of Shc to the nuclei involving c-myc gene expression.  相似文献   

10.
Ras proteins (H-, N-, and K-Ras) operate as molecular switches in signal transduction cascades controlling cell proliferation, differentiation, or apoptosis. The interaction of Ras with its effectors is mediated by the effector-binding loop, but different data about Ras location to plasma membrane subdomains and new roles for some docking/scaffold proteins point to signaling specificities of the different Ras proteins. To investigate the molecular mechanisms for these specificities, we compared an effector loop mutation (P34G) of three Ras isoforms (H-, N-, and K-Ras4B) for their biological and biochemical properties. Although this mutation diminished the capacity of Ras proteins to activate the Raf/ERK and the phosphatidylinositol 3-kinase/AKT pathways, the H-Ras V12G34 mutant retained the ability to cause morphological transformation of NIH 3T3 fibroblasts, whereas both the N-Ras V12G34 and the K-Ras4B V12G34 mutants were defective in this biological activity. On the other hand, although both the N-Ras V12G34 and the K-Ras4B V12G34 mutants failed to promote activation of the Ral-GDS/Ral A/PLD and the Ras/Rac pathways, the H-Ras V12G34 mutant retained the ability to activate these signaling pathways. Interestingly, the P34G mutation reduced specifically the N-Ras and K-Ras4B in vitro binding affinity to Ral-GDS, but not in the case of H-Ras. Thus, independently of Ras location to membrane subdomains, there are marked differences among Ras proteins in the sensitivity to an identical mutation (P34G) affecting the highly conserved effector-binding loop.  相似文献   

11.
12.
13.
14.
Constitutively active Ras (CA-Ras) is known to enhance cell growth through the induction of various signaling cascades including the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/ERK signaling pathways, although the cellular response is highly dependent on the cell type. To evaluate the effect of CA-Ras overexpression on cell growth in recombinant Chinese hamster ovary (rCHO) cells, an erythropoietin (EPO)-producing rCHO cell line with regulated CA-Ras overexpression (EPO-off-CA-Ras) was established using the Tet-off system. The CA-Ras expression level in EPO-off-CA-Ras cells was tightly regulated by doxycycline addition. Although CA-Ras overexpression slightly increased the viable cell concentration during the late exponential phase, it did not increase the maximum viable cell concentration or specific growth rate to a significant degree. Unexpectedly, CA-Ras overexpression in rCHO cells led only to the enhancement in the activation of the MAPK/ERK signaling pathway and not the PI3K/Akt signaling pathway. Taken together, CA-Ras overexpression in rCHO cells did not significantly affect cell growth; it also had no critical impact on viable cell concentration or EPO production, possibly due to a failure to activate the PI3K/Akt signaling pathway.  相似文献   

15.
Ras activation of phosphoinositide 3-kinase (PI3K) is important for survival of transformed cells. We find that PI3Kgamma is strongly and directly activated by H-Ras G12V in vivo or by GTPgammaS-loaded H-Ras in vitro. We have determined a crystal structure of a PI3Kgamma/Ras.GMPPNP complex. A critical loop in the Ras binding domain positions Ras so that it uses its switch I and switch II regions to bind PI3Kgamma. Mutagenesis shows that interactions with both regions are essential for binding PI3Kgamma. Ras also forms a direct contact with the PI3Kgamma catalytic domain. These unique Ras/PI3Kgamma interactions are likely to be shared by PI3Kalpha. The complex with Ras shows a change in the PI3K conformation that may represent an allosteric component of Ras activation.  相似文献   

16.
17.
Vascular endothelial growth factor receptor 2 (VEGFR2) transmits signals of crucial importance to vasculogenesis, including proliferation, migration, and differentiation of vascular progenitor cells. Embryonic stem cell-derived VEGFR2(+) mesodermal cells differentiate into mural lineage in the presence of platelet derived growth factor (PDGF)-BB or serum but into endothelial lineage in response to VEGF-A. We found that inhibition of H-Ras function by a farnesyltransferase inhibitor or a knockdown technique results in selective suppression of VEGF-A-induced endothelial specification. Experiments with ex vivo whole-embryo culture as well as analysis of H-ras(-/-) mice also supported this conclusion. Furthermore, expression of a constitutively active H-Ras[G12V] in VEGFR2(+) progenitor cells resulted in endothelial differentiation through the extracellular signal-related kinase (Erk) pathway. Both VEGF-A and PDGF-BB activated Ras in VEGFR2(+) progenitor cells 5 min after treatment. However, VEGF-A, but not PDGF-BB, activated Ras 6-9 h after treatment, preceding the induction of endothelial markers. VEGF-A thus activates temporally distinct Ras-Erk signaling to direct endothelial specification of VEGFR2(+) vascular progenitor cells.  相似文献   

18.
Interleukin-9 (IL-9) activates three distinct STAT proteins: STAT1, STAT3, and STAT5. This process depends on one tyrosine of the IL-9 receptor, which is necessary for proliferation, gene induction, and inhibition of apoptosis induced by glucocorticoids. By introduction of point mutations in amino acids surrounding this tyrosine, we obtained receptors that activated either STAT5 alone or both STAT1 and STAT3, thus providing us with the possibility to study the respective roles of these factors in the biological activities of IL-9. Both mutant receptors were able to prevent apoptosis, but only the mutant that activated STAT1 and STAT3 was able to support induction of granzyme A and L-selectin. In line with these results, constitutively activated STAT5 blocked glucocorticoid-induced apoptosis. In Ba/F3 cells, significant proliferation and pim-1 induction were observed with both STAT-restricted mutants, though proliferation was lower than with the wild-type receptor. These results suggest that survival and cell growth are redundantly controlled by multiple STAT factors, whereas differentiation gene induction is more specifically correlated with individual STAT activation by IL-9.  相似文献   

19.
Ras GTPases were long thought to function exclusively from the plasma membrane (PM). However, a current model suggests that Ras proteins can compartmentalize to regulate different functions, and an oncogenic H-Ras mutant that is restricted to the endomembrane can still transform cells. In this study, we demonstrated that cells transformed by endomembrane-restricted oncogenic H-Ras formed tumors in nude mice. To define downstream targets of endomembrane Ras pathways, we analyzed Cdc42, which concentrates in the endomembrane and has been shown to act downstream of Ras in Schizosaccharomyces pombe. Our data show that cell transformation induced by endomembrane-restricted oncogenic H-Ras was blocked when Cdc42 activity was inhibited. Moreover, H-Ras formed a complex with Cdc42 on the endomembrane, and this interaction was enhanced when H-Ras was GTP bound or when cells were stimulated by growth factors. H-Ras binding evidently induced Cdc42 activation by recruiting and/or activating Cdc42 exchange factors. In contrast, when constitutively active H-Ras was restricted to the PM by fusing to a PM localization signal from the Rit GTPase, the resulting protein did not detectably activate Cdc42 although it activated Raf-1 and efficiently induced hallmarks of Ras-induced senescence in human BJ foreskin fibroblasts. Surprisingly, PM-restricted oncogenic Ras when expressed alone could only weakly transform NIH 3T3 cells; however, when constitutively active Cdc42 was coexpressed, together they transformed cells much more efficiently than either one alone. These data suggest that efficient cell transformation requires Ras proteins to interact with Cdc42 on the endomembrane and that in order for a given Ras protein to fully transform cells, multiple compartment-specific Ras pathways need to work cooperatively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号