首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Morphological observations using light and scanning electron microscopes and molecular phylogenetic analysis revealed that the fungus growing on the surface of fruits or sepals of Styrax japonica collected at Nagano, Japan, is a new powdery mildew with an unusual morphology, described here as Erysiphe monascogera. This fungus has mainly a single ascus in a chasmothecium, but molecular phylogenetic analysis and the shape of the hyphal appressoria suggest that it is an Erysiphe species. Erysiphe monascogera is a sister-species to E. nomurae on Symplocos chinensis var. leucocarpa f. pilosa, although there are obvious morphological differences between the two species. This inconsistency between molecular phylogeny and morphology may be explained by the unique habitat of E. monascogera. Erysiphe monascogera and E. nomurae are included in a clade composed of the E. alphitoides complex, which suggests that these two species diverged by host jumping of the E. alphitoides complex, having oaks as major host plants.  相似文献   

2.
 A new species of Erysiphe sect. Uncinula is described and illustrated from Patagonia, Argentina. Erysiphe patagoniaca sp. nov., found on leaves of Nothofagus × antarctica, is similar to E. nothofagi and E. kenjiana, but differs in its appendages being twisted throughout their length and the number of appendages, asci, and ascospores. The two endemic species of Erysiphe sect. Uncinula, E. magellanica and E. nothofagi, coexisted on the same leaves together with Erysiphe patagoniaca. Received: September 19, 2002 / Accepted: November 28, 2002 Acknowledgments The authors are grateful to Ms. Seiko Niinomi for providing the micrographs of ascomata of Erysiphe spp. on Nothofagus. Correspondence to:S. Takamatsu  相似文献   

3.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

4.
The tree-of-heaven Ailanthus altissima (family Simaroubaceae, order Sapindales) is one of the most invasive neophytes in Europe. The tree originated in China and became invasive worldwide in areas with Mediterranean to temperate climates. As known from other invasive plants, only a few pathogens have been reported from A. altissima in Europe, and, to date, powdery mildews on it have been unknown in the European region. Recently, two powdery mildews were found on A. altissima during a survey of neomycetes on non-native plants in Switzerland. Because they did not fit with any of the species known to occur on Simaroubaceae in Asia, they were identified by DNA barcoding using sequences of the ITS region of the n-rDNA, revealing them to be the powdery mildews of plane and oak trees, Erysiphe platani and E. alphitoides. This is the first record of E. platani on a host outside the genus Platanus and its family Platanaceae, as well as its order Proteales. In contrast, E. alphitoides has been reported to occur on several host families and orders. Host jumps over great phylogenetic distances—such as across plant families and orders—appear to be quite common in biogeographically novel associations between Erysiphales species and plants. The consequences of such host jumps for identity and taxonomic placement of species are discussed here. It is further questioned whether both pathogens are usable as biological control agents against the tree-of-heaven.  相似文献   

5.
A powdery mildew fungus on leaves of Dalbergia cultrata var. cultrata (Fabaceae) collected at the Queen Sirikit Botanical Garden in northern Thailand is proven to be a new species of the genus Brasiliomyces and is described as B. chiangmaiensis sp. nov. with light and SEM micrographs. Differences in known Brasiliomyces species are discussed, and a key to species of this genus is provided.  相似文献   

6.
Powdery mildew, caused by the obligate biotrophic ascomycete Erysiphe necator, is one of the most destructive grapevine diseases worldwide. Cultivars of Vitis vinifera L, for wine and table grape production, are all susceptible to E. necator, whose attacks result in severe epidemics under the warm and dry conditions of the Mediterranean basin. The aim of the present study was to compare the susceptibility of different grapevine cultivars to E. necator by an in vitro assay for assessing the potentiality of this method in breeding programs for resistance to the pathogen. Leaves of 12 grapevine cultivars were spot-inoculated in vitro with about 10 conidia from five different isolates of E. necator, using colony growth and conidiation 3 wk post-inoculation as indicators of susceptibility to the disease. A remarkable difference was observed between highly susceptible cultivars like ‘Baresana’, ‘Malvasia’, ‘Bianca’, and ‘Italia’, and the less susceptible ‘Alphonse Lavallée’ and ‘Ohanez’, in accordance with their behavior in the field. No statistically significant differences were found in the virulence of E. necator isolates.  相似文献   

7.
The aim of this study was to investigate the inheritance of powdery mildew disease and to tag it with a DNA marker to utilize for the marker-assisted selection (MAS) breeding program. The powdery mildew resistant genotype Fallon er and susceptible genotype 11760-3 ER were selected from 177 genotypes by heavy infestation of germplasm with Erysiphe pisi through artificial inoculation The F1 plants of the cross Fallon/11760-3 indicated the dominance of the susceptible allele, while F2 plants segregated in 3: 1 ratio (susceptible: resistant) that fit for goodness of fitness by χ2 (P > 0.07), indicating monogenic recessive inheritance for powdery mildew resistance in Pisum sativum. A novel RAPD marker OPB18 (5′-CCACAGCAGT-3′) was linked to the er-1 gene with 83% probability with a LOD score of 4.13, and was located at a distance of 11.2 cM from the er-1 gene.  相似文献   

8.
Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus.  相似文献   

9.
Ascomata of a powdery mildew-like fungus have been found on Carpinus laxiflora in Tochigi Prefecture of Japan since 2003. The morphological and molecular characteristics of this fungus are reported, and a new species, Erysiphe fimbriata, is proposed. It has large chasmothecia (200–250 μm in diameter) with long (up to 4–5 mm in length), fimbriate appendages arising from the upper half of the chasmothecia and turning upward, and numerous asci (22–38 per chasmothecium). Erysiphe fimbriata is a unique fungus both genetically and morphologically.  相似文献   

10.
The powdery mildew disease affects several crop species and is also one of the major threats for pea (Pisum sativum L.) cultivation all over the world. The recessive gene er1, first described over 60 years ago, is well known in pea breeding, as it still maintains its efficiency as a powdery mildew resistance source. Genetic and phytopathological features of er1 resistance are similar to those of barley, Arabidopsis, and tomato mlo powdery mildew resistance, which is caused by the loss of function of specific members of the MLO gene family. Here, we describe the obtainment of a novel er1 resistant line by experimental mutagenesis with the alkylating agent diethyl sulfate. This line was found to carry a single nucleotide polymorphism in the PsMLO1 gene sequence, predicted to result in premature termination of translation and a non-functional protein. A cleaved amplified polymorphic sequence (CAPS) marker was developed on the mutation site and shown to be fully co-segregating with resistance in F2 individuals. Sequencing of PsMLO1 from three powdery mildew resistant cultivars also revealed the presence of loss-of-function mutations. Taken together, results reported in this study strongly indicate the identity between er1 and mlo resistances and are expected to be of great breeding importance for the development of resistant cultivars via marker-assisted selection.  相似文献   

11.
Three genes, er1, er2 and Er3, conferring resistance to powdery mildew (Erysiphe pisi) in pea have been described so far. Because single gene-controlled resistance tends to be overcome by evolution of pathogen virulence, accumulation of several resistance genes into a single cultivar should enhance the durability of the resistance. Molecular markers linked to genes controlling resistance to E. pisi may facilitate gene pyramiding in pea breeding programs. Molecular markers linked to er1 and er2 are available. In the present study, molecular markers linked to Er3 have been obtained. A segregating F2 population derived from the cross between a breeding line carrying the Er3 gene, and the susceptible cultivar ‘Messire’ was developed and genotyped. Bulk Segregant Analysis (BSA) was used to identify Random Amplified Polymorphic DNA (RAPD) markers linked to Er3. Four RAPD markers linked in coupling phase (OPW04_637, OPC04_640, OPF14_1103, and OPAH06_539) and two in repulsion phase (OPAB01_874 and OPAG05_1240), were identified. Two of these, flanking Er3, were converted to Sequence Characterized Amplified Region (SCAR) markers. The SCAR marker SCW4637 co-segregated with the resistant gene, allowing the detection of all the resistant individuals. The SCAR marker SCAB1874, in repulsion phase with Er3, was located at 2.8 cM from the gene and, in combination with SCW4637, was capable to distinguish homozygous resistant individuals from heterozygous with a high efficiency. In addition, the validation for polymorphism in different genetic backgrounds and advanced breeding material confirmed the utility of both markers in marker-assisted selection.  相似文献   

12.
ITS sequences determined for 53 Erysiphe specimens on Syringa and Ligustrum collected in Europe, East Asia, and North and South America were divided into two ITS groups, S and K types. Phylogenetic analysis showed that these two ITS types do not share a common ancestor and form separate clades. The K type on Ligustrum was identified as Erysiphe ligustri based on the three-dimensional branching pattern of appendages. Morphological observations showed that there are some morphological differences—pigmentation of appendages and number of ascospores per ascus—between the S and K types on Syringa. Based on these morphological observations, the S and K types on Syringa were identified as E. syringae and E. syringae-japonicae, respectively. The recent abundant production of chasmothecia by lilac powdery mildew in Europe was caused by E. syringae-japonicae introduced from East Asia. DNA sequence analyses of the rDNA ITS region and the 28S rDNA, tub2, CYP51, and Chs1 genes did not support an interspecific hybrid origin for E. syringae-japonicae. Haplotype analysis suggested that E. syringae originated in North America and independently migrated to East Asia and Europe/South America.  相似文献   

13.
Ubiquitination plays important roles in disease resistance in plants. We report the identification and functional characterization of the RING-type ubiquitin ligase gene VpUR9 from Chinese wild Vitis pseudoreticulata accession Baihe-35-1. VpUR9, encodes 164 amino acids and possesses a RING conserved motif. It is homologously cloned from the cDNA library of the high powdery mildew (Erysiphe necator [Schw.] Burr) resistant V. pseudoreticulata accession Baihe-35-1 inoculated with E. necator. The gene is induced in response to powdery mildew and salicylic acid. VpUR9 fused with FLAG-tag controlled by 35S promoter was transformed into 15 regenerated V. vinifera L. cv. Red Globe lines via Agrobacterium tumefaciens-mediated transformation. Twelve of these lines were confirmed by Western blot of FLAG-tag. As a result, the powdery mildew-resistance of Red Globe transformed with VpUR9 was repressed. Furthermore, the expression of some disease-resistant related genes (NPR1, PR1, PR10 and PAL) of the transgenic Red Globe declined compared with wild type grapes when inoculated with powdery mildew or salicylic acid. When treated with jasmonic acid methyl ester, its PR1 gene expression decreased, while the expressions of NPR1, PR10 and PAL all increased, contrasting with the wild type grape.  相似文献   

14.
Powdery mildew caused by Blumeria graminis f. sp. tritici is an important wheat disease in China and other parts of the world. Wild emmer (Triticum turgidum var. dicoccoides) is the immediate progenitor of cultivated tetraploid and hexaploid wheats and thus an important resource for wheat improvement. Wild emmer accession IW2 collected from Mount Hermon, Israel, is highly resistant to powdery mildew at the seedling and adult plant stages. Genetic analysis using an F2 segregating population and F2:3 families, derived from a cross between susceptible durum cultivar Langdon and wild emmer accession IW2, indicated that a single dominant gene was responsible for the resistance of IW2. Bulked segregant and molecular marker analyses detected that six polymorphic SSR, one ISBP, and three EST-STS markers on chromosome 3BL bin 0.63–1.00 were linked to the resistance gene. Allelic variations of resistance-linked EST-STS marker BE489472 revealed that the allele was present only in wild emmer but absent in common wheat. Segregation distortion was observed for the powdery mildew resistance allele and its linked SSR markers with preferential transmission of Langdon alleles over IW2 alleles. The resistance gene was introgressed into common wheat by backcrossing and marker-assisted selection. Since no designated powdery mildew resistance gene has been found on chromosome 3BL, the resistance gene derived from wild emmer accession IW2 appears to be new one and was consequently designated Pm41. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The Chinese winter wheat cultivar Zhoumai 22 is highly resistant to powdery mildew. The objectives of this study were to map a powdery mildew resistance gene in Zhoumai 22 using molecular markers and investigate its allelism with Pm13. A total of 278 F2 and 30 BC1 plants, and 143 F3 lines derived from the cross between resistant cultivar Zhoumai 22 and susceptible cultivar Chinese Spring were used for resistance gene tagging. The 137 F2 plants from the cross Zhoumai 22/2761-5 (Pm13) were employed for the allelic test of the resistance genes. Two hundred and ten simple sequence repeat (SSR) markers were used to test the two parents, and resistant and susceptible bulks. Subsequently, seven polymorphic markers were used for genotyping the F2 and F3 populations. The results indicated that the powdery mildew resistance in Zhoumai 22 was conferred by a single dominant gene, designated PmHNK tentatively, flanked by seven SSR markers Xgwm299, Xgwm108, Xbarc77, Xbarc84, Xwmc326, Xwmc291 and Xwmc687 on chromosome 3BL. The resistance gene was closely linked to Xwmc291 and Xgwm108, with genetic distances of 3.8 and 10.3 cM, respectively, and located on the chromosome bin 3BL-7-0.63-1.0 in the test with a set of deletion lines. Seedling tests with seven isolates of Blumeria graminis f. sp. tritici (Bgt) and allellic test indicated that PmHNK is different from Pm13, and Pm41 seems also to be different from PmHNK due to its origin from T. dicoccoides and molecular evidence. These results indicate that PmHNK is likely to be a novel powdery mildew resistance gene in wheat.  相似文献   

16.
The powdery mildew Erysiphe magnifica (Erysiphales, Ascomycota) has been recorded for the first time on lotus (Nelumbo nucifera) based on a collection from the Botanical Garden in Frankfurt am Main, Germany. This powdery mildew previously known only from Magnolia species was identified by a combination of light and scanning electron microscopic investigation of ascomata and the Oidium stage, and comparison of ITS DNA sequences. This finding is discussed with respect to the narrow host specificity concept used in Erysiphales taxonomy, the effect of lotus leaf surface on fungal infection, and the extending geographical distribution of powdery mildews.  相似文献   

17.
18.
Powdery mildew caused by the biotrophic ascomycete fungus Erysiphe pisi Syd. is one the most devastating diseases of peas (Pisum sativum L.) with enormous impact in seed production. The most efficient genetic resistance to this disease, so far identified, is conferred by the naturally occurring or experimentally induced by chemical mutagenesis recessive state of the locus er1. Genetically mapped over 2 decades ago, this gene was recently identified as a homolog of the barley (Hordeum sativum L.) powdery mildew resistance gene MLO, and renamed as PsMLO1. The broad wide resistance conferred by the er1/PsMLO1 locus was found to be a consequence of the loss of function of the encoded PsMLO1 protein. After the publication of the expressed sequence of this gene by another research group, we published the genomic sequences of this gene which harbors a relatively long (TA) microsatellite sequence (SSR) in the fifth intron. SSR markers based on this highly polymorphic microsatellite can be used for marker-assisted selection in multiple pea powdery mildew resistance breeding programs involving the er1/PsMLO1 resistance, except in the rare circumstances where the progenitor lines are monomorphic for the microsatellite sequence.  相似文献   

19.
Powdery mildew of pea is caused by Erysiphe pisi DC and is a serious threat to pea (Pisum sativum L.) production throughout much of the world. Development and utilization of genetic resistance to powdery mildew is considered an effective and sustainable strategy to manage this disease. One gene, er1, conferring powdery mildew resistance, was previously cloned and sequenced, and the functional markers for each resistance allele were reported. Allele-specific DNA markers are efficient and powerful tools to facilitate crop improvement and new cultivar development in breeding programs. However, extensive application of these markers is limited by gel-associated obstacles. In this study, eight breeder-friendly kompetitive allele-specific PCR (KASPar) markers were developed to overcome the problems of gel-based markers and increase the efficiency of genotypic screening. In order to identify additional pea germplasm with powdery mildew resistance, these KASPar markers were deployed and used to genotype a pea collection derived from the USDA pea single-plant (PSP) collection. Simultaneously, a phenotypic screening and a genotypic validation using the corresponding gel-based functional markers were conducted on the PSP collection. One pea accession, PI 142775, was identified by both phenotyping and genotyping to carry the allele er1-1 for powdery mildew resistance, indicating that the KASPar assay is an efficient and robust tool for breeding for powdery mildew resistance.  相似文献   

20.
The only two species of Choiromyces collected up to now in Spain, C. venosus and C. magnusii, were studied with both morphological and molecular methods. Phylogenetic inference of nrDNA ITS and LSU sequences showed that they should be considered independent species in the genus Choiromyces. Choiromyces venosus is a hypogeous fungus, infrequent but naturally present in the Iberian Peninsula, that is imported into Spain from central Europe without any indication of its origin or proper taxonomic identification. It is usually sold as highly-prized edible species of the genus Tuber such as T. magnatum. Choiromyces magnusii is a more frequent hypogeous fungus in Spain that is commercialized in spring on a local scale together with different species in the genus Terfezia. Additionally, the Australian species Reddellomyces westraliensis, which was introduced with Eucalyptus camaldulensis plantations, is cited here for the first time in Spain and Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号